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DIFFUSE INTERFACE MODELS ON GRAPHS FOR
CLASSIFICATION OF HIGH DIMENSIONAL DATA∗

ANDREA L. BERTOZZI† AND ARJUNA FLENNER‡

Abstract. There are currently several communities working on algorithms for classification of
high dimensional data. This work develops a class of variational algorithms that combine recent
ideas from spectral methods on graphs with nonlinear edge/region detection methods traditionally
used in the PDE-based imaging community. The algorithms are based on the Ginzburg–Landau
functional which has classical PDE connections to total variation minimization. Convex-splitting
algorithms allow us to quickly find minimizers of the proposed model and take advantage of fast
spectral solvers of linear graph-theoretic problems. We present diverse computational examples
involving both basic clustering and semisupervised learning for different applications. Case studies
include feature identification in images, segmentation in social networks, and segmentation of shapes
in high dimensional datasets.

Key words. Nyström extension, diffuse interfaces, image processing, high dimensional data

AMS subject classifications. 68U10, 49-04, 49M25, 62H30, 68T10, 91C20

DOI. 10.1137/11083109X

Introduction. The work develops a new algorithm for classification of high di-
mensional data on graphs. The method bridges gaps between the PDE-image process-
ing community, methods related to L1 compressive sensing, and the graph-theoretic
community. The algorithm is inspired by diffuse interface methods that have long
been used in physical science modeling of problems with free boundaries and inter-
faces. These same ideas also arise in compressive sensing because of the connection
between the diffuse interface energies and total variation (TV) minimization. Thus
it is natural to extend these concepts beyond classical continuum modeling to the
discrete graph framework. By implementing various techniques for fast linear algebra
and eigenfunction decomposition, we can design methods that are quite good in terms
of performance and speed. They are also versatile, and we illustrate examples on a
variety of datasets including congressional voting records, high dimensional test data,
and machine learning in image processing.

This paper is structured as follows: In section 1 we review diffuse interface meth-
ods in Euclidean space and convex splitting methods for minimization. These well-
known constructions make heavy use of the classical Laplace operator, and our new
algorithms involve extensions of this idea to a more general graph Laplacian. Section 2
reviews some of the notation and definitions of the graph Laplacian, and this discus-
sion contains a level of detail appropriate for readers less familiar with this machinery.
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Included in this section are a review of segmentation using spatial clustering and a
discussion of various normalization conventions for these linear operators on graphs,
in connection to real world problems such as machine learning in image analysis. The
rest of the paper explains the main computational algorithm and presents different
examples involving both sparse connectivity and nonsparse connectivity of the graph.
The algorithms have a multiscale flavor due to (a) the different scales inherent in dif-
fuse interface methods and (b) the role of scale in the eigenfunctions and eigenvalues
of the graph Laplacian.

1. Background on diffuse interfaces, image processing, and convex split-
ting methods. Diffuse interface models in Euclidean space are often built around
the Ginzburg–Landau (GL) functional

GL(u) =
ε

2

∫
|∇u|2dx+

1

ε

∫
W (u)dx,

where W is a double well potential. For example, W (u) = 1
4 (u

2 − 1)2 has minimizers
at plus and minus one. The operator ∇ denotes the spatial gradient operator, and the
first term in GL is ε/2 times the H1 seminorm of u. The small parameter ε represents
a spatial scale, the diffuse interface scale.

The model is called “diffuse interface” because there is a competition between the
two terms in the energy functional. Upon minimization of this functional, the double
well will force u to go to either one or minus one; however, the H1 term forces u to
have some smoothness, thereby removing sharp jumps between the two minima ofW .
The resulting minimization leads to regions where u is approximately one, regions
where it is approximately minus one, and a very thin, O(ε) scale transition region
between the two. Thus the minimizer appears to have two phases with an interface
between them. For this reason such models are often referred to as “phase field”
models when one considers dynamic evolution equations built around this energy
functional. There are several interesting features of GL minimizers. For example, the
transition region between the two phases typically has some length associated with
it, and the GL functional is roughly proportional to this length. This can be made
rigorous by considering the notion of Gamma convergence of the GL functional. It is
known to converge [36] to the TV seminorm,

GL(u)→Γ C|u|TV .

Diffuse interface models with spatial gradient operators are multiscale because several
length scales exist in the model, the smallest being the diffuse interface scale ε. The
construction of the GL functional requires ε to have units of length so that the two
terms have balanced units. Also, note that the double well typically restricts u to
take on integral order values (between zero and one).

Multiple time scales exist in evolution equations that make use of this functional.
The most common examples are the Allen–Cahn equation, which is the L2 gradient
descent of this functional, and the Cahn–Hilliard equation, which is a gradient descent
in the H−1 inner product. Recent work has gone into developing efficient numerical
schemes to track these dynamics [35, 50, 34, 8]; the same ideas can be used to speed
up variational algorithms based on these functionals.

1.1. The connection between GL and image processing. Perhaps the most
important motivation for the method proposed in this paper is the existing literature
on the use of the GL functional in image processing. We review some of that literature
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for the reader not directly familiar with it to better motivate the choice of methods
proposed here. The GL functional is sometimes used in image processing as an alter-
native or a relative to the TV seminorm. Because of the Gamma convergence, these
two functionals can sometimes be interchanged. Moreover, the highest order term
in the GL functional is purely quadratic allowing for fast minimization schemes in
some problems. Recent advances in TV minimization procedures, e.g., split Bregman
and graph cut methods [31, 16], have made this less necessary; nevertheless there are
cases where the pure TV case is not enough and the diffuse interface version may be
a simpler method.

One example of the GL functional in image processing is the motivation for the
Esedoḡlu–Tsai threshold method [23] for Chan–Vese segmentation [13]. The construc-
tion of their method is directly built on the GL functional, rather than the TV method
of the original Chan and Vese paper [13]. We also note that this method was inspired
by the original Merriman, Bence, and Osher paper [40]. Another example is work by
March (see [21, 11]) and Esedoglu (see [20, 22]). The work by Ambrosio and Tortorelli
[3] is well known in image processing for diffuse interface approximations.

In a typical application we want to minimize an energy functional of the form

E(u) = GL(u) + λF (u, u0),

where F (u, u0) is a fitting term to known data. In the case of denoising, F (u, u0)
is often just an L2 fit,

∫
(u − u0)2. In the case of deblurring it is

∫
(K ∗ u − u0)2,

or the L2 of the blurred solution with the data. For inpainting we often have an L2

fit to known data in the region where the data is known, i.e.,
∫
Ω
(u − u0)2. In some

instances in the above a different norm is used, e.g., L1 or other norms. In the case of
Cahn–Hilliard-based inpainting, the method is not strictly a gradient flow [7, 6], but
rather is based on gradient flows. In fact, the method is a sort of hybrid in which the
L2 least-squares fitting term is paired with the Cahn–Hilliard H−1 dynamics. The
result is a method that achieves both required boundary conditions for inpainting,
namely, continuation of both grayscale information and direction of edges across the
inpainting domain. The higher order evolution is important for that application and
is related to the geometry of the problem. The Cahn–Hilliard inpainting problem is a
good example of a method where new fast algorithms for TV minimization have yet to
be developed due, in part, to the unusual boundary conditions. The convex splitting
method (see below) allows for very fast inpainting using a Cahn–Hilliard method and
the GL functional.

The energy E(u) can be minimized in the L2 sense using a gradient descent, which
gives us a modified Allen–Cahn equation

ut = −δGL
δu
− λδF

δu
= εΔu− 1

ε
W ′(u)− λδF

δu
.

This can be evolved to steady state to obtain a local minimizer of the energy E. We
note that, in general, especially for the GL functional, E is not convex and thus may
have multiple local energy minima. The result is that the long time behavior of the
solution of the modified Allen–Cahn equation may depend on the initial condition.

1.2. Convex splitting and time stepping of the GL functional. One of the
reasons to choose the GL functional instead of TV is that the minimization procedure
for GL often involves the first variation of GL for which the highest order term,
involving the Laplace operator, is linear. Thus if one has fast solvers for the Laplace
operator or relatives of it, one can take advantage of this in designing convex splitting
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schemes discussed below. This class of schemes will be developed in the context
of graph-based methods later in this paper. To motivate the ideas for the reader
unfamiliar with the technique we provide some background on this class of methods
in relation to work involving the GL functional.

A particular class of fast solvers are ones in which the Laplacian can be trans-
formed so that the operator diagonalizes. A classical example would be the fast
Fourier transform (FFT) which transforms the Laplace operator to multiplication by
−|k|2, where k is the wave number of the Fourier mode. The FFT works because the
Fourier modes are also eigenfunctions of the Laplace operator. An example of this
use in long-time solutions of the Cahn–Hilliard equation is discussed in detail in [50].
Other recent advances for fast Poisson solvers could be used as well (see, e.g., [39]).
In our graph-based examples we use fast methods for directly diagonalizing the graph
Laplacian, either through standard sparse linear algebra routines or, in the case of
fully connected weighted graphs, Nyström extension methods.

Convex splitting schemes are based on the idea that an energy functional can be
written as the sum of convex and concave parts,

E(u) = Evex(u)− Ecave(u),

where this decomposition is certainly not unique because we can add and subtract any
convex function and not change E but certainly change the convex/concave splitting.
The idea behind convex splitting for the gradient descent problem is to perform a
time-stepping scheme in which the convex part is done implicitly and the concave
part explicitly. More precisely, the convex splitting scheme is

(1.1)
un+1 − un

dt
= −δEvex

δu
(un+1) +

δEcave

δu
(un).

The art then lies in choosing the splitting so that the resulting scheme is stable
and also computationally efficient to solve. This method was popularized by a well-
known but unpublished manuscript by Eyre [24]. It has been used to solve the Cahn–
Hilliard equation on large domains and on long time intervals [50] and also in imaging
applications involving Cahn–Hilliard [7] and a wavelet version of the method proposed
here for graphs [17]. This same idea has also been directly discussed in the context of
general minimization procedures for nonconvex functionals [56].

2. Generalizations of the GL functional to graphs. One can consider a
generalization of the GL functional to graphs. This is in the same spirit as the work
of Dobrosotskaya and the first author [17] generalizing the GL functional to wavelets.
In their work they construct a linear operator with features similar to those of the
Laplace operator; however, the eigenfunctions are the wavelet basis for some choice
of wavelets. The natural choice of eigenvalues are ones that scale like the inverse
square of the length scale of the wavelet basis functions, much in the same way that
the eigenvalues of the Laplace operator are the inverse square of the period of the
corresponding eigenfunction.

In this section we describe how to generalize the GL functional, or, more precisely,
its L2 gradient flow, to the case of functions defined on graphs [14]. One challenge is
the normalization of the Laplacian due to the fact that we are working with purely
discrete functionals that may not have a direct spatial embedding. We include some
details for the reader not familiar with the graph-based literature. This section is or-
ganized into five subsections discussing how the graph Laplacian can be incorporated
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into a GL-type functional. First, we introduce the graph Laplacian using weight func-
tions. We specifically introduce the notation used in this paper. In order to provide
insight into our algorithm, we continue in the next subsection with a short discussion
on previous segmentation algorithms using the graph Laplacian. Next, the benefits
of the normalized graph Laplacian are discussed. The graph-based GL functional
for segmentation is then introduced, and the last subsection mentions techniques for
creating weight functions and thus building interesting graph Laplacians.

2.1. Graph definitions and notation. Consider an undirected graph G =
(V,E) with vertex set V = {νn}Nn=1 and edge set E. A weighted undirected graph
[14] has an associated weight function w : V × V → R satisfying w(ν, μ) = w(μ, ν)
and w(ν, μ) ≥ 0. The degree of a vertex ν ∈ V is defined as

(2.1) d(ν) =
∑
μ∈V

w(ν, μ).

The degree matrix D can then be defined as the N×N diagonal matrix with diagonal
elements d(ν).

The size of a subset A ⊂ V will be important for segmentation using graph theory,
and there are two important size measurements. For A ⊂ V define

|A| := the number of vertices in A,(2.2)

vol(A) :=
∑
ν∈A

d(ν).(2.3)

The topology of the graph also plays a role. A subset A ⊂ V of a graph is connected
if any two vertices in A can be joined by a path such that all the points also lie in A.
A subset of A is called a connected component if it is connected and if A and A are
not connected. The sets A1, A2, . . . , Ak form a partition of the graph if Ai ∩ Aj = ∅
and ∪kAk = V .

The graph Laplacian is the main tool for graph theory–based segmentation. De-
fine the graph Laplacian L(ν, μ) as

(2.4) L(ν, μ) =

{
d(ν) if ν = μ,

−w(ν, μ) otherwise.

The graph Laplacian can be written in matrix form as L = D −W , where W is the
matrix w(ν, μ). The following definition and property of L are important:

1. (quadratic form) For every vector u ∈ RN

(2.5) 〈u, Lu〉 = 1

2

∑
μ,ν∈V

w(ν, μ)(u(ν) − u(μ))2.

2. (eigenvalue) L has N nonnegative, real valued eigenvalues with 0 = λ̃1 ≤
λ̃2 ≤ · · · ≤ λ̃N , and the eigenvector of λ̃1 is the constant N dimensional one
vector 1N .

The quadratic form is exploited to define a minimization procedure as in the Allen–
Cahn equation above. The eigenvalue condition gives limitations on the spectral
decomposition of the matrix L. These spectral properties are essential for the spectral
clustering algorithms discussed below.
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There are two popular normalization procedures for the graph Laplacian, and the
normalization has segmentation consequences [14, 51]. The normalization that will
be used in this work is the symmetric Laplacian Ls defined as

(2.6) Ls = D−1/2LD−1/2 = I −D−1/2WD−1/2.

The symmetric Laplacian is named as such since it is a symmetric matrix. The random
walk Laplacian is another important normalization given by

Lw = D−1L = I −D−1W.(2.7)

The random walk Laplacian is closely related to discrete Markov processes, and we
discuss the use of the random walk Laplacian in section 5.2.

The spectrum of the graph Laplacian is used for graph segmentation, and some
well-known results are collected here for future reference. The spectra of Ls and
Lw are the same, but the eigenvectors are different. The easily verifiable spectral
relationships between Lw and Ls follow:

1. λ̃ is an eigenvalue of Lw if and only if λ̃ is an eigenvalue of Ls.
2. ψ is an eigenvector of Lw if and only if D1/2ψ is an eigenvector of Ls.
3. λ̃ is an eigenvalue of Lw with eigenvector ψ if and only if Lψ = λ̃Dψ.

2.2. Choice of similarity function. Here we discuss how to construct the
weight functions w(x, y), sometimes referred to as similarity functions, for specific
applications involving high dimensional data. There are two factors to consider when
choosing w(x, y). First, the choice of weight function must reflect the desired outcome.
For segmentation, this typically involves choosing an appropriate metric on a vector
space. Our examples below used the standard Euclidean norm, but other norms may
be more appropriate. For example, the angle norm may work better for segmentation
of hyperspectral images. A second consideration is algorithm speed. The segmentation
algorithms below requires the diagonalization of w(x, y), and this step is often the
rate limiting procedure. There are two main methods for obtaining speed in the
diagonalization. The first method is to use the Nyström extension described in section
3.2. This method does not require a modification of w(x, y), and calculations on large
graphs with connections between every vertex are possible.

The second method is to create a sparse graph. A sparse graph can be created by
keeping only the N largest values of w(x, y) for each fixed x. Note that such a graph
is not symmetric, but it can easily be made symmetric to aid in computation.

We list the two techniques to create the similarity function w(x, y) used in this
paper.

1. The Gaussian function

(2.8) w(x, y) = exp(−||x− y||2/τ)

is a common similarity function. Depending on the choice of metric, this
similarity function includes the Yaroslavsky filter [55] and the nonlocal means
filter [9].

2. Zelnik-Manor and Perona introduced local scaling weights for sparse matrix
computations [57]. They start with a metric d(xi, xj) between each sample

point. The idea is to define a local parameter
√
τ(xi) for each xi. The choice

in [57] is
√
τ(xi) = d(xi, xM ), where xM is the Mth closest vector to xi. In

[57], M = 7, while in this work and [46], M = 10. The similarity matrix is
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then defined as

(2.9) w(x, y) = exp

(
− d(x, y)2√

τ(x)τ(y)

)
.

This similarity matrix is better at segmentation when there are multiple scales
that need to be segmented simultaneously.

2.3. Segmentation, spectral clustering, and the graph Laplacian. In this
subsection we review some of the previous literature on spectral clustering, in which
one directly uses the spectrum of the graph Laplacian to segment data. The goal of
graph clustering is to partition the vertices into groups according to their similarities.
Consider the weight function as a measure of the similarities; then the graph problem
is equivalent to finding a partition of the vertices such that the sum of the edge weights
between the groups is small compared with the sum of the edges within the groups.
The weighted graph minimization algorithms in their original form are NP complete
problems [51]; therefore a relaxed problem was formulated by Shi and Malik [43],
where the minimization function is allowed to be real valued and such minimization
problems are equivalent to the spectral clustering methods.

The segmentation problem naturally generates a graph structure from a set of
vertices vi each of which is assigned a vector zi ∈ R

K . For example, when considering
voting records of the U.S. House of Representatives, each representative defines a
vertex, and his or her voting record defines a vector. A different example arises when
considering similarity between regions in image data. Each pixel defines a vertex,
and one can assign a high dimensional vector to that pixel by comparing similarities
between the neighborhood around that pixel and that of any other pixel. Given such
an association, a symmetric weight matrix can be created using a symmetric function
ŵ(x, y) : RK ×R

K → R+. In particular, if νi(y) = zi represents the vector associated
with the vertex νi, then the weight matrix w(νi, μj) = ŵ(νi(z), μj(z)) = ŵ(zi, zj) is
a positive symmetric function. We will abuse notation and not distinguish between
these two functions and write w(νi, μj) = ŵ(zi, zj) = w(zi, zj). Similar statements
are true for any function u : V → R. Spectral clustering algorithms for binary
segmentation consist of the following steps:

Input: A set of vertices V with the associated set of vectors Z ⊂ RK , a similarity
measure w(x, y) : RK ×RK → R+, and the integer k of clusters to construct.

1. Calculate the weight function w(x, y) for all x, y ∈ Z.
2. Compute the graph Laplacian L.
3. Compute the second eigenvector ψ2 of L or the second eigenvector ψ2 of the

generalized eigenvalue problem Lψ = λDψ.
4. Segment ψ2 into two clusters using k-means (with k = 2).

Output: A partition of V (or, equivalently, Z) into two clusters A and A.

Two characteristics of the spectral clustering algorithms should be highlighted. First,
the algorithm determines clusters using a k-means algorithm. We note that the k-
means algorithm is used to construct a partition of the real valued output, and any
algorithm that performs this goal can be substituted for the k-means algorithm. For
example, Lang [38] uses separating hyperplanes. A partitioning algorithm is needed
since the relaxed problem does not force the final output function f to be binary
valued. We address this problem by using the GL potential.

The second characteristic is that spectral clustering finds natural clusters through
a constrained minimization problem. The constrained minimization problem exploits
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a finite number of eigenfunctions depending on the a priori chosen number of clusters.
A significant difference in our method is that we utilize all the eigenfunctions in our
variational problem. One can interpret this as an issue of the number of scales that
need to be resolved to perform the desired classification. For spectral clustering to
work, the eigenfunctions used must capture all the relevant scales in the problem. By
using all the eigenfunctions we resolve essentially all the scales in the problem, modulo
the choice of ε. In the classical differential equation problem, ε selects a smallest length
scale to be resolved for the interfacial problem. An analogous role could occur in the
graph problem, and thus it would make sense to use this method on large dataset
problems rather than relatively small problems, for which other methods might be
simpler.

2.4. Proper normalization of the graph Laplacian with scale. An im-
portant issue with nonlocal operators is the behavior of the operators with increased
sample size. Increasing sample size for the discrete Laplace operator corresponds to
decreasing the grid size, and this operator must be correctly normalized in order to
guarantee convergence to the differential Laplacian. We note that in the case of the
classical finite difference problem for PDEs the entire matrix is multiplied by N2,
where N is the number of vertices in one of the dimensions, which is essentially 1/dx,
the spatial grid size. Recall that the largest eigenvalue of the operator scales like
N2 or 1/dx2, which gives a stiffness constraint for forward time stepping of the heat
equation, as a function of grid size. Moreover, with this scaling, the graph Laplacian
converges to the continuum differential operator in the limit of large sample size, i.e.,
as N →∞, where N is the grid resolution along one of the coordinate axes.

Proper normalization conditions for convergence also exist for the graph Lapla-
cian. The issue of sample size also comes into play, but rather than convergence
to a differential operator, we consider the density of vertices, in the case of spatial
embeddings, which can be measured by the degree of each vertex. The normalized
Laplace operator as defined in (2.6) is known to have the correct scaling for spectral
convergence of the operator in the limit of large sample size.

We make the following assumptions:
1. The set of k vectors Z = {zi}Ni=1 was sampled from a manifold in RK .
2. Each sample is drawn from an unknown distribution μ(z).
3. The graph Laplacian is a graph representation of the integrating kernel w(x, y)

with vertex set V .
4. Each vector in Z is assigned a vertex and weighted edges w(x, y) between

every x, y ∈ Z.
Consistency and practicality of the method require similar and useful solutions as the
number of samples increases [53, 51, 52]. Furthermore, the computational methods
must be stable. The stability of the computational methods will be discussed first.

Note that the eigenvectors of the discrete Laplacian converge to the eigenvectors
of the Laplacian; i.e., the discrete Fourier modes converge to the continuous Fourier
modes. Similarly, it has been shown that the spectrum of the graph Laplacian con-
verges (compactly) to the corresponding integral operator [52]. We note that, as
stated in [51], there is a dilemma with the convergence for clustering applications.
In summary, the unnormalized Laplacian converges to the operator L defined by
(Lu)(x) = d(x)u(x) − ∫

Ω
w(x, y)u(y)dy, while the normalized Laplacian converges

to Ls defined by (Lsu)(x) = u(x) − ∫Ω(w(x, y)/√d(x)d(y))u(y)dy. Both operators
are a sum of two operators, a multiplication operator and the operator w(x, y) or
w(x, y)/

√
d(x)d(y). The operators with kernels w(x, y) and w(x, y)/

√
d(x)d(y) are
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Fig. 2.1. Eigenfunctions from the graph Laplacian obtained from the cow image in section 4.3.
The left three images are eigenvectors of the unnormalized Laplacian L as in (2.4). The right three
images are eigenvectors of the symmetric graph Laplacian Ls as defined in (2.6).

compact and thus have a countable spectrum. The operators d(x) and the identity
operator 1 are multiplication operators, but the operator d(x) has an a priori un-
known value, while the identity operator has an isolated eigenvalue. Note that the
spectrum of a multiplication is the essential range of the operator d(x); therefore, by
perturbation theory results, the essential spectrum of L is the essential spectrum of
d(x) [53].

Perturbation theory does not imply anything about the convergence of the eigen-
values inside the essential spectrum of the operator L. Therefore, we do not know if
the function L is consistent if we increase the number of samples. This problem is
avoided if the normalized Laplacian is used instead.

This normalization discussion is not pedantic, and the importance of correct nor-
malization is shown in Figure 2.1. The right three images are example eigenvectors of
the symmetric graph Laplacian Ls. Note that the eigenvectors form reasonable seg-
mentation of the images. For example, the second eigenvector distinguishes between
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the sky and cows, the third eigenvector separates the cows from the background,
and the fourth eigenvector separates the two cows. The left three images are exam-
ple eigenvalues of the unnormalized Laplacian L. The spectrum of the unnormalized
Laplacian (2.4) is dominated by large spikes at a few pixels. In contrast, the eigenfunc-
tions on the normalized symmetric Laplacian (2.6) provide appealing segmentations
of the image.

2.5. Semisupervised learning (SSL) on graphs. There are numerous ap-
proaches to SSL using graph theory, and we mention a few that are related to this
work. The work of Coifman, Szlam, and others [15, 47] demonstrates techniques for
learning classes using a diffusion framework. Their technique implements the geo-
metric diffusion framework with a random walk probability interpretation. Instead
of minimizing an energy functional, they find a time s when the marginal between
known classes is maximized and then classify the rest of the samples using this dif-
fusion time s. The final segmentation is dominated by the smallest eigenvalues of
the random walk graph Laplacian. In contrast, our method is based on an extension
of a nonlinear geometric segmentation method applied to general graphs rather than
lattices embedded in Euclidean space.

The work of Gilboa and Osher [28, 29] is another closely related technique, in-
spired in part by earlier work of Buades, Coll, and Morel [9] for denoising. They
use the graph Laplacian with an explicit forward time-stepping scheme. The explicit
time stepping introduces a stiffness constraint (discussed below) that slows the rate of
convergence. Furthermore, their algorithm is stopped at an arbitrary stopping time,
while the technique proposed here has an automated stopping criterion.

In [29], a nonlinear nonlocal TV-based method is developed which has remarkable
results for texture-based inpainting, although the computational time is not so fast.
Our method is a different way of approaching this problem by using the GL functional
instead of TV and by taking advantage of fast algorithms for the minimization problem
by using the Nyström extension for the graph Laplacian.

Now we show how to use the GL energy on graphs in an SSL application. Assume
we have data organized in a graphical structure in which each graph node zi ∈ Z
corresponds to a data vector xi and the weights between the nodes are constructed
using a method such as those described in section 2.2. The goal is to perform a binary
segmentation of the data on the graph based on a known subset of nodes (possibly
very small) which we denote by Zdata. We denote by λ the characteristic function of
Zdata:

λ(z) =

{
1 if z ∈ Zdata,

0 otherwise.

The graph segmentation problem automatically finds a decomposition of the vertices
Z into disjoint sets Zin ∪ Zout. These will be computed by assigning ±1 to each of
the nodes using a variational procedure of minimizing a GL functional. The known
data involves a subset of nodes for which +1 or −1 is already assigned and denoted
by u0 in the variational method.

The GL functional for SSL is

(2.10) E(u) =
ε

2
〈u, Lsu〉+ 1

4ε

∑
z∈Z

(u2(z)− 1)2 +
∑
z∈Z

λ(z)

2
(u(z)− u0(z))2.
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The fidelity term uses a least-squares fit, allowing for a small amount of misclassifi-
cation (i.e., noisy data) in the information supplied.

3. Computational algorithm. In this section we go into greater detail regard-
ing the numerical scheme used to find the minimizers of the variational problem. There
are two main components to the algorithm—the choice of splitting schemes (1.1) and
the computation of the basis functions as eigenfunctions of the graph Laplacian. We
cover both below.

3.1. Convex splitting scheme. Our choice of splitting is motivated by prior
work on GL-type functionals for image processing with fidelity [17, 7, 6]. First we
review the algorithm as it applies to differential operators in the classical GL regular-
ization. An efficient convex splitting scheme can be derived by writing the GL energy
with fidelity as

E(u) = E1(u)− E2(u)

with

E1(u) =
ε

2

∫
|∇u(x)|2dx+

c

2

∫
|u(x)|2dx,(3.1)

E2(u) = − 1

4ε

∫
(u(x)2 − 1)2dx+

c

2

∫
|u(x)|2dx−

∫
λ(x)

2
(u(x)− u0(x))2dx.(3.2)

Note that the energy E2 is not strictly concave, but we can choose the constant c
such that it is concave for u near and in between the potential wells of (u2−1)2. This
scheme was chosen so the nonlinear term is in the explicit part of the splitting.

Given the above splitting and since the Fourier transform diagonalizes the Laplace
operator, the following numerical scheme solves the Euler–Lagrange equations:

a
(n)
k =

∫
eikxu(n)(x) dx,

b
(n)
k =

∫
eikx(u(n))3(x) dx,

d
(n)
k =

∫
eikxλ(x)(u(n)(x)− u0(x)) dx,

Dk = 1 + dt (ε k2 + c),

a
(n+1)
k = D−1

k

[(
1 +

dt

ε
+ c dt

)
a
(n)
k − dt

ε
b
(n)
k − dt

(
d
(n)
k

)]
.

Note that the H1 seminorm is convex and thus appears in the convex part of the
energy splitting. The first variation of that yields the Laplace operator, which is a
stiff operator to have in an evolution equation. The stiffness results because the eigen-
values of the Laplace operator range from order one negative values to minus infinity.
Or in the case of a discrete approximation of the Laplace operator, the eigenvalues
range from order one to minus one divided by the square of the smallest length scale
of resolution (e.g., the spatial grid size in a finite element or finite difference approx-
imation). By projecting onto the eigenfunctions of the Laplacian, we see that there
are many different time scales of decay in the spatial operator and all must be re-
solved numerically in the case of a forward time-stepping scheme. However, when the
Laplace operator is evaluated implicitly, at the new time level, one need not resolve
the fastest timescales in the time-stepping scheme.
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The same time-stepping scheme can be used if the spectral decomposition of
the graph Laplacian is used instead of the Laplacian, and we can use the spectral
decomposition for any of the graph Laplacians L,Lw, or Ls. We used the spectrum
of Ls due to the convergence and scaling issues discussed above. The following is a
summary of the method as used in this paper.

Decompose the solution u(n) at each time step according to the known eigenvectors
{φk(x)} of Ls:

u(n)(x) =
∑
k

a
(n)
k φk(x).

Likewise we need to decompose the pointwise cube of u and the fidelity term,

[u(n)(x)]3 =
∑
k

b
(n)
k φk(x),

λ(x)
(
u(n)(x) − u0(x)

)
=
∑
k

d
(n)
k φk(x).

Then the algorithm for the next iteration is given in terms of the coefficients for

u(n+1)(x) =
∑
k

a
(n+1)
k φk(x)

in terms of its decomposition using the eigenfunctions of Ls again as a basis for the
solution. Define λ̃k to be the eigenvalue associated with the eigenfunction φk(x), i.e.,

Lsφk = λ̃kφk; then the update equation for a
(n)
k is

Dk = 1 + dt (ε λ̃k + c),

a
(n+1)
k = D−1

k

[(
1 +

dt

ε
+ c dt

)
a
(n)
k − dt

ε
b
(n)
k − dt

(
d
(n)
k

)]
.(3.3)

Convex Splitting for the Graph Laplacian

1. Input ← an initial function u0 and the eigenvalue-eigenvector pairs
(λ̃k, φk(x)) for the graph Laplacian Ls from (2.6).

2. Set convexity parameter c and interface scale ε from (3.2).
3. Set the time step dt.

4. Initialize a
(0)
k =

∫
u(x)φk(x) dx.

5. Initialize b
(0)
k =

∫
[u0(x)]

3φk(x) dx.

6. Initialize d
(0)
k = 0.

7. Calculate Dk = 1 + dt (ε λ̃k + c).
8. For n less than a set number of iterations M

(a) a
(n+1)
k = D−1

k

[(
1 + dt

ε + c dt
)
a
(n)
k − dt

ε b
(n)
k − dtd(n)k

]
,

(b) u(n+1)(x) =
∑

k a
(n+1)
k φk(x),

(c) b
(n+1)
k =

∫
[u(n+1)(x)]3φk(x) dx,

(d) d
(n+1)
k =

∫
λ(x) (u(n+1)(x)− u0(x))φk(x) dx.

9. end for
10. Output ← the function u(M)(x).

This is a generalization of a classical “pseudospectral” scheme for PDEs in which

one goes back and forth between the spectral domain (the coefficients a
(n)
i ) and the
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graph domain in which we evaluate u directly at every vertex on the graph. The
latter must be done in order to compute the cube [u(n)(x)]3 and the fidelity term
λ(x) (u(n)(x)−u0(x)) which can then be projected back to the spectral domain. Here
the convex temporal splitting is very important because it effectively removes the
stiffness inherent in the diverse time scales that arise from the range of eigenvalues
of the graph Laplacian. Our proposed method is useful only if one has a fast method
for determining the eigenfunctions φk(x) and their corresponding eigenvalues. For
the case of fully connected graphs we use the Nyström extension reviewed in the next
subsection.

3.2. Nyström extension for fully connected graphs. The spectral decom-
position of the matrix Ls is related to the spectral decomposition

D−1/2WD−1/2φ = ξφ

through the relationship

Lsφ = (1−D−1/2WD−1/2)φ

= (1− ξ)φ = λ̃φ.

Therefore, the convex splitting scheme is efficient if the spectral decomposition of
the matrix D−1/2WD−1/2 can be quickly found. The matrix W , however, is a large
matrix, and it cannot be assumed that the matrix will be sparse. We use the Nyström
extension discussed by Fowlkes and coauthors [25, 5, 26] to address this issue.

The Nyström method is a technique for performing matrix completion that has
been used in a variety of image processing applications including spectral clustering
[41], kernel principle component analysis [19], and fast Gaussian process calculations.
Below we review the Nyström method as used in this paper. Although the method
is well known in the graph theory community, we include a summary of the ideas
here for the benefit of readers not familiar with these techniques (including the PDE
community who may be interested in extending these ideas to general graph problems).

The Nyström method approximates the eigenvalue equation∫
Ω

w(y, x)φ(x) dx = γφ(y)

using a quadrature rule. Recall that a quadrature rule is a technique for finding L
interpolation weights aj(y) and a set of L interpolation points X = {xj} such that

L∑
j=1

aj(y)φ(xj) =

∫
Ω

w(y, x)φ(x) dx+ E(y),

where E(x) is the error in the approximation. Our model, however, does not allow us
to choose the interpolation points, but rather the interpolation points are randomly
sampled from some sample space.

Recall that Z = {zi}Ni=1 is the set of nodes on the graph; it also defines an N
dimensional vector space with W as a linear operator on that space. In this work,
the Nyström method is used to approximate the eigenvalues of the matrix W with
components w(zi, zj). A key idea used to produce a fast algorithm is to choose a
randomly sampled subset X = {xi}Li=1 of the entire graph Z to use as interpolation
points, and the interpolation weights are the values of the weight function aj(y) =
w(y, xj).
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Partition Z into two sets X and Y with Z = X ∪Y and X ∩Y = ∅. Furthermore,
create the set X by randomly sampling L points from Z. Let φk(x) be the kth
eigenvector for W . The Nyström extension approximates the value of φk(yi), up to a
scaling factor, using the system of equations∑

xj∈X

w(yi, xj)φk(xj) = γφk(yi).(3.4)

This equation cannot be calculated directly since the eigenvectors φk(x) are not ini-
tially known. This problem is overcome by first approximating the eigenvectors of W
with the eigenvectors of a submatrix of W . These approximate eigenvalues, however,
may not be orthogonal. The approximate eigenvectors will then be orthogonalized,
and this final set of eigenvectors will serve as an approximation to the eigenvectors
of the complete matrix W . Note that since only a subset of the matrix W is initially
used, only a subset of the eigenvectors can be approximated using this method.

The notation

WXY =

⎡
⎢⎣
w(x1, y1) . . . w(x1, yN−L)

...
. . .

...
w(xL, y1) . . . w(xL, yN−L)

⎤
⎥⎦(3.5)

will be used in this section. Similarly, define the matrices WXX and WY Y and the
vectors φX and φY . The matrix W ∈ R

K × R
K and vectors φ ∈ R

K can be written
as

W =

[
WXX WXY

WY X WY Y

]

and φ =
[
φTX φTY

]T
with φT denoting the transpose operation.

The spectral decomposition of WXX is WXX = BXΓBT
X , where BX is the eigen-

vector matrix of WXX with each column an eigenvector and Γ = diag(γ1, γ2, . . . , γL)
are the corresponding eigenvalues. The Nyström extension of (3.4) in matrix form
using the interpolation points X is

BY =WYXBXΓ−1.(3.6)

In short, the n eigenvectors of W are approximated by B =
[
BT

X (WY XBXΓ−1)T
]T
.

The associated approximation of W = BΓBT is

W =

[
WXX WXY

WY X WY XW
−1
XXWXY

]
.

From this equation, it can be shown that the large matrix WY Y is approximated by

WY Y ≈WY XW
−1
XXWXY .

As mentioned in [25], the quality of the approximation to WY Y is given by the norm
||WY Y −WY XW

−1
XXWXY ||, and this is determined by how well WY Y is spanned by

the columns of WXY .
This decomposition is unsatisfactory since the approximate eigenvectors φi(x)

defined above are not orthogonal. This deficiency can be fixed using the following
trick. For arbitrary unitary A and diagonal matrix Ξ, if

Φ =

[
WXX

WY X

]
(BXΓ−1/2BT

X)(AΞ−1/2),(3.7)
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the matrixW can be written asW = ΦΞΦT .We are therefore free to choose A unitary
such that ΦTΦ = 1. If such a matrix A can be found, then the matrix W will be
diagonalized using the unitary matrix Φ. Define the operator Y = AΞ−1/2; then the
proper choice of A is given through the relationship

ΦTΦ = (Y T )−1WXXY
−1 + (Y T )−1W

−1/2
XX WXYWY XW

−1/2
XX Y −1.

If ΦTΦ = 1, then after multiplying the previous equation on the right by Ξ1/2A and
on the left by the transpose, we have

ATΞA =WXX +W
−1/2
XX WXYWY XW

−1/2
XX .(3.8)

Therefore, if the matrix WXX + W
−1/2
XX WXYWY XW

−1/2
XX is diagonalized, then its

spectral decomposition can be used to find an approximate orthogonal decomposition
of W with eigenvectors Φ given by (3.7).

The matrix W must also be normalized in order to use Ls for segmentation.
Normalization of the matrix is a straightforward application of (3.7). In particular,
let 1K be the K dimensional unit vector; then define [dTX dTY ]

T as[
dX
dY

]
=

[
WXX WXY

WY X WY XW
−1
XXWXY

] [
1K

1N−L

]

=

[
WXX 1K +WXY 1N−L

WY X 1K + (WY XW
−1
X WXY )1N−L

]
.

Let A./B denote componentwise division between two matrices A and B and x yT the
outer product of two vectors; then the matrices WXX and WXY can be normalized
by

WXX =WXX ./(sXs
T
X),

WXY =WXY ./(sXs
T
Y ),(3.9)

where sX =
√
dX and sY =

√
dY .

The Nyström extension can be summarized by the following pseudocode.

Nyström Extension for Symmetric Graph Laplacian
1. Input ← a set of features Z = {xi}Ni=1

2. Partition the set Z into Z = X ∪ Y , where X consists of L randomly
selected elements.

3. Calculate WXX and WXY using (3.5).
4. dX =WXX1L +WXY 1N−L.
5. dY =WY X1L + (WY XW

−1
XXWXY )1N−L.

6. sX =
√
dX and sY =

√
dY .

7. WXX =WXX ./(sXs
T
X).

8. WXY =WXY ./(sXs
T
Y ).

9. BXΓBT
X =WXX (using the SVD).

10. S = BXΓ−1/2BT
X .

11. Q =WXX + S(WXYWY X)S.
12. AΞAT = Q (using the SVD).

13. Φ =
[

BXΓ1/2

WY XBXΓ−1/2

]
BT

X(AΞ−1/2) diagonalizes W .

14. Output ← the L eigenvalue-eigenvector pairs (φi, λ̃i), where φi is the ith
column of Φ and λ̃i = 1− ξi with ξi the ith diagonal element of Ξ.
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4. Classification on graphs. The GL energy functional can be used for un-
supervised and semisupervised classification learning on graphs. This section gives
examples of three classifications problems. In particular, we investigate the house
voting records of 1984 from the UCI machine learning database [27], the Two Moons
example dataset of Bühler and Hein [10], and an image segmentation problem.

Each of the classification examples follows the same general procedure. Given a
set of vertices V = {νi}Ni=1, the general procedure consists of the following SSL steps:

1. Determine features: For each vertex νi, determine a feature vector zi.
2. Build graph: Determine edge weights using either formula (2.8) or (2.9) and

build an undirected graph based on these weights.
3. Initialization: Initialize a function u(zi) based on any a priori knowledge.
4. Minimization: Minimize the GL energy functional with appropriate con-

straints and fidelity term(s). Note that for all experiments we use the nor-
malized Laplacian Ls.

5. Segmentation: Segment the vertices into two classes according to f(zi) =
sgn(u(zi)).

Each vertex represents an object in the collection that we want to segment, and the
feature vectors provide distinguishing characteristics of the objects.

4.1. House voting records from 1984. The U.S. House of Representatives
voting record dataset consists of 435 individuals each of whom represents a vertex of
the graph. The goal is to use SSL to segment the data into the two party affiliation
Democrat or Republican. The SSL algorithm was performed by assuming a party af-
filiation of five individuals, two Democrats and three Republicans, and segmenting the
rest. The votes were taken in 1984 from the 98th United States Congress, 2nd session.

A 16 dimensional feature vector was created using 16 votes recorded for each
individual in the following manner. A yes vote was set to one, while a no vote was
set to minus one. The voting records had a third category, a did-not-vote category.
Each did-not-vote recording was represented by a zero in the feature vector. A fully
weighted graph was then created using Gaussian similarity function (2.8) with τ = 0.3.

The function u(z) was initialized to one for the two Democrats, minus one for the
three Republicans, and zero for the rest of the classes. The GL function with fidelity,
(2.10), was then minimized using the convex splitting algorithm with parameters
c = 1, dt = 0.1, ε = 2, and 500 iterations. In the fidelity terms, we chose λ = 1 for
each of the five known individuals and λ = 0 for the rest. This segmentation yielded
95.13% correct results. Note that due to the small size of this graph we did not use
the Nyström extension to compute the spectrum.

The probability of the party affiliation given the vote was above 90% for some of
the votes. We investigated the accuracy of the segmentation when these votes were
removed. Figure 4.1 shows the accuracy of the method when the 14, 12, 10, and 8
least predictive votes were used for the analysis, and we obtained 91.42%, 90.95%,
85.92%, and 77.49% respective accuracy.

The work of Ratanamahatana and Gunopulos [42] studies this dataset using a
naive Bayesian decision tree method. They obtain 96.6% classification accuracy using
80% of the data for training and 20% for classification. In contrast, our method uses
only 1.15% of the data (5 samples out of 435) to obtain a classification accuracy of
95.13%. The work of Gionis, Mannila, and Tsaparas [30] uses clustering aggregation to
automatically determine the number of classes and class membership. Their method
obtains 89% correct classification in contrast to our 95.13%, in which we specify two
clusters.
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Fig. 4.1. The error rate of segmenting the House votes. We tested the accuracy of the segmen-
tation when the most predictive votes were removed. The segmentation procedure was reproduced
where we removed the top two, four, six, and eight most predictive votes to investigate the robustness
of the algorithm.

4.2. Two moons. The two moon dataset is used by Bühler and Hein [10]
and Szlam and Bresson [45, 46] in connection with spectral clustering using the p-
Laplacian. This dataset is constructed using two half circles in R2 with radius one.
The first half circle is contained in the upper half plane with a center at the origin,
while the second half circle is created by taking the half circle in the lower half plane
and shifting it to (1, 0.5). The two half circles are embedded in R100. Then 2000
data points are sampled from the circles, and independent and identically distributed
Gaussian noise with standard deviation 0.02 is added to each of the 100 dimensions.
The goal is to segment the two half circles using unsupervised segmentation. The
unsupervised segmentation is accomplished by adding a mean zero constraint to the
variational problem.

In order to make quantitative comparisons, we build the graph following the
procedure described in Szlam and Bresson [45, 46] and Bühler and Hein [10]. They
created a 10 nearest neighbor weighted graph from the data using the self-tuning
weights of Zelnik-Manor and Perona [57] discussed in section 2.2, where M was set
to 10. This is a difficult segmentation problem since the embedding and noise create
a complex graphical structure.

We initialize the function u(z) using the second eigenfunction of the Laplacian.
More specifically, we set u(z) = sgn(φ2(z)−φ2), where φ2(z) is the second eigenfunc-
tion and φ2 is the mean of the second eigenfunction. This initialization was used since
the second eigenfunction approximates the relaxed graph cut solution (see section 5.1)
We minimize the GL energy (2.10) with the mean constraint

∫
u(x)dx = 0, but with-

out any fidelity terms. The Nyström extension is ineffective for sparse graphs. Instead,
we used the first 20 eigenvectors using the MATLAB sparse matrix algorithms.

Figure 4.2 compares the classical spectral clustering method with our method.
Parameters for the GL minimization problem are shown in Table 4.1 and its caption.
The left-hand figure is the segmentation achieved by thresholding the eigenvector of
the two moon dataset. Clearly, spectral clustering using the second eigenvector of the
Laplacian does not segment the two half moons accurately. The right-hand image is
the segmentation obtained from the algorithm presented in this paper. This algorithm
segmented this dataset with an error rate of 2.1%.

Reducing the GL energy parameter ε raises the potential barrier between the
two states in the GL potential function and reduces the effect of the graph weights.
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Fig. 4.2. The left-hand figure is the segmentation achieved by thresholding the second eigenvec-
tor of the graph Laplacian. The right-hand image is the segmentation obtained from the algorithm
presented in this paper. This algorithm segmented the two moon dataset with an error rate of 2.1%.

Table 4.1

Table of parameter values for the GL functional for the two moon segmentation. The parameter
dt = 0.1 was used throughout along with the formula (2.9) to construct the weighted graph.

ε c No. iterations
10 0.2 500
2 1 200
1.5 1.33 200
1 2 200

Fig. 4.3. The parameter ε determines a scale for the GL energy functional. A more accurate
segmentation is obtained as the ε scale parameter decreases. The percentage of correct classification
was 82.85%, 90.75%, and 94.55% for ε = 10, 2.6, and 2, respectively.

Reducing ε corresponds to reducing the scale of the graph and allows for a sharper
transition between the two states. The change in scale is shown in Figure 4.3 where
better segmentation was achieved with reduced ε. The ε = 10 case is essentially the
spectral clustering solution, while the ε = 2 case closely resembles the 1-Laplacian
solution of Bühler and Hein [10]. A high quality segmentation in which 94.55% of
the samples were classified correctly occurs when the parameter ε is set to two. This
is contrasted with the second eigenvector spectral clustering technique that obtained
82.85% correct classification, essentially equivalent to the large ε = 10 case.

Better segmentation can be achieved if the algorithm is repeated while reducing
ε using the last segmentation as the initialization. The method of successive reduc-
tions in ε was used for image inpainting via the Cahn–Hilliard equation [6, 7]. In [6]
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Fig. 4.4. The 1-Laplacian and the GL clustering methods obtain nearly identical results for
unsupervised clustering on the half moon dataset. The 1-Laplacian and GL percentage error was
97.3% and 97.9%, respectively.

Fig. 4.5. The accuracy of the GL unsupervised segmentation procedure presented in this paper
is compared with spectral clustering and the 1-Laplacian code of Hein and Bühler [33]. These two
graphs were created using 100 runs of the two moon dataset and averaging the results.

the authors carefully study the space of steady states for a stripe inpainting exam-
ple in which the problem exhibits an incomplete supercritical pitchfork bifurcation
as the scale parameter ε is varied. Different methods of reducing ε could lead to
different local minima of the energy functional, along the two stable branches of the
pitchfork. Such a detailed study is beyond the scope of this paper; however, we can
examine a segmentation, shown in Figure 4.4, where ε is reduced from 2 to 1 in steps
of 0.5. The final segmentation gives 97.7% accuracy. We compared this segmenta-
tion to the 1-Laplacian inverse power method (IPM) of Hein and Bühler [33]. (The
code is freely obtainable from www.ml.uni-saarland.de/code/oneSpectralClustering/
oneSpectralClustering.html.) The normalized 1-Laplacian algorithm of Bühler and
Hein with 10 initializations and 5 inner loops was used to obtain 97.3% accuracy for
this dataset. The computational time and accuracy of the 1-Laplacian method and
the GL technique are shown in Figure 4.5. The GL technique of this paper was able
to obtain more accurate results in less computational time. No additional effort was
made in our numerical tests to reduce run time—for example, the large number of it-
erations may not be necessary with an adaptive dt or a better initialization. Speedup
in other problems can easily be an order of magnitude when making such adjustments.
Even so, the run time is very fast.
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4.3. Image labeling. The objective of image segmentation is to partition an
image into multiple components where each component is a set of pixels. Furthermore,
each component represents a certain object or class of objects. We are interested in
the binary segmentation problem where each pixel can belong to one of two classes.

Most image segmentation algorithms assume that a segmented region is connected
in the image. We need not make this assumption. Instead, we build a graph based
on feature vectors derived from a neighborhood of each pixel and segment the image
based on a partition of the graph. The graph-based segmentation allows us to label
the unknown content of one image based on the known content of another image. As
input to our segmentation algorithm we take two images, where one of the images
has been hand segmented into two classes. The goal is to automatically segment the
second image based on the segmentation of the first image.

Each pixel y represents a vertex of the graph. The feature vector associated with
each vertex y is defined using a pixel neighborhood N(y) around y. For example, a
typical choice for a pixel neighborhood on a Cartesian grid Ω = Z2 is the set

N(y) = {z ∈ Ω : |z1 − y1|+ |z2 − y2| ≤M}
for some integer M . A feature vector derived from a finite sized neighborhood of a
pixel is called a pixel neighborhood feature.

Let I be an image; then an example of a pixel neighborhood feature is the set of
image pixel values z(y) = I(N(y)) chosen in a consistent order. Another example is
to calculate a collection of filter responses for each pixel, i.e., z(x) = ((g1 ∗ I)(x), (g2 ∗
I)(x), . . . , (gj ∗ I)(x)), where gi represents a filter for each i, and ∗ is the convolution
operator. The proper choice of neighborhood and features are application dependent.
Note that a neighborhood system is equivalent to an edge system in graph theory
[12], but the neighborhood system used to determine pixel neighborhood features is
not the same as the graph used to generate the graph Laplacian.

A fully connected graph is generated using the pixels from two images as vertices
and the weight matrix w(x, y) for edge weights. This graph construction is very
general and can be used to segment many different types of objects based on their
determining features. For example, color and texture features are appropriate for
segmenting trees and grass from other objects. We also note that the metric used
in the weight matrix can be modified depending on the dataset. For example, the
spectral angle may be more appropriate for segmentation of hyperspectral images.

We demonstrate the image labeling technique on cow images from the Microsoft
Research Cambridge Object Recognition Image Database [2] and on face segmenta-
tion. The feature vectors used for the Microsoft image database and the face segmen-
tation were, respectively, the Varma–Zisserman MR8 texture features [49] and the
van de Weijer–Schmid Hue features [48]. The MR8 texture features are robust to ro-
tation and are translational invariant. The Hue features are invariant to photometric
transformations.

On the hand labeled image, the function u(z) was initialized to one for one of the
classes and minus one for the other class. The function u(z) was initialized to zero
on the unlabeled image. The graph Laplacian was constructed using (2.8). The GL
energy with fidelity was then minimized. The parameter values were as follows: τ =
0.1, dt = 0.01, ε = 0.1, c = 21, and 500 iterations. The fidelity term Λ was set to one
on the initial image and to zero on the unknown image. The Nyström extension was
used to determine the spectral decomposition of the weight matrix. The labels of the
second image were then determined by the sign of u(z) on the second image. Results
of the segmentation for the Microsoft image database are shown in Figure 4.6. Note
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Fig. 4.6. The labels from the original upper left–hand image were transferred to the upper
right–hand image. The result for each region is shown in the lower images. Note that the algorithm
is robust to mislabeled sections. Furthermore, the algorithm can identify regions for which we do
not know a label such as the wall in the right-hand images. Original images in the top row are from
the Microsoft Research Cambridge Object Recognition Image Database [2] (copyright c© Microsoft
Corporation). These images were modified to produce the images in rows 2–4 ( 8April 2012).

that the algorithm is robust to mislabeling in the initial image. Additional examples
are shown in Figure 4.7. This figure demonstrates that cows of another color are not
labeled as a cow. Note that the white is predominately classified as not a black or
brown cow. Furthermore, the algorithm can handle more complex scenes where there
are no cows. In the cluttered airplane scene, no consolidated features are identified.

Another example is given in Figure 4.8, where a face from the Georgia Tech
Face Database [1] was segmented. In both examples, the predominant features were
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Fig. 4.7. This figure uses the same labeled image as in Figure 4.6 and tries to classify similar
features in additional images. We include one image with a white colored cow and another image
with clutter and no cows. Original images in the top row are from the Microsoft Research Cambridge
Object Recognition Image Database [2] (copyright c© Microsoft Corporation). These images were
modified to produce the images in the bottom row ( 8April 2012).

Fig. 4.8. The robustness of the algorithm to lighting conditions and changes in texture is shown.
The upper left–hand image is the original image with the upper right–hand image the training region.
The lower left–hand image was segmented using the training region in the upper right–hand image,
and the segmentation is shown in the lower right–hand image. Original image is from the Georgia
Tech Face Database [1] (see also http://www.anefian.com/research/face reco.htm).
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identified, and some of the pixels with few representative features were removed. For
example, the nose and eye of the brown cow were removed from the segmentation,
and the eyes and eyebrows of the face were removed. In some other notable image
segmentation algorithms a postprocessing filter is often needed. The results shown
here use no postprocessing filters.

5. Connection to previous methods in the literature. We discuss the con-
nection between our algorithm and related methods from the literature. In the final
section we present some open problems.

5.1. Graph cuts. Spectral clustering and graph segmentation methods are re-
lated through the graph cut objective function. For two disjoint subsets A,B ⊂ V ,
define the graph cut of two sets as

cut(A,B) =
∑

x∈A,y∈B

w(x, y).

The function cut(A,B) is smaller when there are fewer weights on the connections
between the sets A and B.

The mincut problem involves finding a partition {A,A} of V that minimizes
cut(A,A), where A is the complement of A. Stoer and Wagner [44] have an efficient
algorithm for this problem. The mincut problem, however, leads to poor classification
performance for many problems since isolated points often form one cluster and the
rest of the points form another cluster. Modifications to the mincut problem include
a normalization of either |A| or vol(A) as a measure of the size. This procedure leads
to minimization of one of the following [51]:

RatioCut(A,A) =
cut(A,A)

|A| +
cut(A,A)

|A| ,

Ncut(A,A) =
cut(A,A)

vol(A)
+
cut(A,A)

vol(A)
.

The sum is minimized when either |A| or vol(A) is the same as |A| or vol(A), respec-
tively. In other words, the number of vertices or sum of the edge weights must be
close to the same in each partition. This balance turns the mincut problem into an
NP hard problem [54]. Spectral clustering techniques relax the balancing conditions
to approximately solve a simpler version of the mincut problem.

The relaxed minimization of the RatioCut is

min
A⊂Y
〈u, Lu〉 such that u ⊥ 1 and ||u||2 = |Y |.

The relaxed problem is a norm minimization with two constraints, an L2 constraint
and a subspace constraint.

Similar to the RatioCut segmentation procedure, the relaxed NCut problem is

min
A⊂Y
〈u, Lsu〉 such that u ⊥ D1/21, and ||u||2 = vol(Y ).

This minimization problem is in the form of the Rayleigh–Ritz theorem, and the
solution is again given by the second eigenvector of Ls. We emphasize that the
difference between the relaxed problem and the true graph cut solution is that the
relaxed problem determines a real valued solution, while the graph cut problem finds a
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binary solution. The relaxation from the discrete problem to the real valued problem
does not always yield an approximation to the Ncut or RatioCut problem even for
the binary segmentation problem. See, for example, [32]. The relaxed problem has
been used for many segmentation problems, and it produces appealing results [43].

Minimizing the GL energy functional with the mass constraint u ⊥ 1 produces a
graph cut problem that is different from the other spectral clustering methods, and
it reintroduces a nearly binary valued solution. Recall that the GL potential term
encourages the variational solution u to take values ±1. Assume that these are the
only two values for the variational solution; then the normalized graph Laplacian is

〈u, Lsu〉 = C + 4
∑

x∈Ay∈A

w(x, y)√
d(x)d(y)

− 2

⎛
⎝ ∑

x∈A, y∈A

w(x, y)√
d(x)d(y)

+
∑

x∈A, y∈A

w(x, y)√
d(x)d(y)

⎞
⎠ ,

where C is a constant that depends on the graph but not the partition. Note that a
mass constraint (or a fidelity constraint) will prevent the trivial solution with every
element in a single set. It is clear from this representation that the graph cut is
minimized when the normalized weights between the partitions are small, while the
normalized weights within the partition remain large.

The graph p-Laplacian is a generalization of the graph Laplacian due to Amghi-
bech [4]. The graph p-Laplacian is the operator Lp that satisfies the equation

〈u, Lpu〉 = 1

2

N∑
i,j=1

wij |ui − uj |p.

Spectral clustering was accomplished by Bühler and Hein using the graph p-Laplacian
[10]. They defined the eigenvectors of the graph p-Laplacian using the Rayleigh–Ritz
principle where the functional to be minimized is

Fp(u) =
〈u, Lpu〉
||u||pp .

The work of Szlam and Bresson [45, 46] demonstrated that the solution of the
relaxed version of the 1-Laplacian is identical to that of the unrelaxed version. They
then derived a split Bregman algorithm to find an approximate solution to the 1-
Laplacian. Another approximation method was derived by Bühler and Hein to solve
the 1-Laplacian [33]. Their algorithm was used in this work for comparison to the GL
segmentation procedure.

The work by Zhu, Ghahramani, and Lafferty [58] is another early publication in
this area. Their work connects elements of graph theory, Gaussian random fields,
and random walks to provide an outline for supervised learning algorithms using the
2-Laplacian. Their approach constrains u to be fixed at some of the nodes, but they
do not use the double well potential or a fidelity term as is done in this work.

5.2. Nonlocal means. Buades, Coll, and Morel [9] described the following non-
local filtering, nonlocal means (NLM) procedure for noise removal in images. Define
the nonlocal operator

NL(u)(x) =
1

d(x)

∫
Ω

w(x, y)u(y) dy,
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with

||u(x)− u(y)||a =

∫
Ω

Ga(t)|u(x+ t)− u(y + t)|2dt,

w(x, y) = exp

(
−||u(x)− u(y)||a

h2

)
, d(x) =

∫
Ω

w(x, y)dy,(5.1)

and Ga(t) a Gaussian with standard deviation a.
Similarly to the segmentation in section 4.3, the norm || · ||a is defined using

an image neighborhood. Unlike in section 4.3, the NLM algorithm uses a Gaussian
weighted norm so the values of pixels closer to the center pixel have a larger influence
on the similarity between two neighborhoods.

Given this analogue with graph theory, the NLM weight matrix can be related to
the random walk graph Laplacian. The definition of NL(u) shows that NL(u)(x) =
D−1W . Substituting NL(u)(x) = D−1W into (2.7) gives the relationship

Lw = 1−NL(u)(x).
The operator Lw, and therefore the NLM operator, naturally occur in the gradient

flow of a weighted L2 norm. To see this, consider the weighted L2 inner product

〈u, v〉d(x) =
∫
Ω

u(x) v(x) d(x)dx,

where d(x) is the degree function. With this inner product we can write

〈u, Lwu〉d(x) =
∫
Ω

u(x)

(∫
Ω

(u(x) − u(y)) 1

d(x)
w(x, y)dy

)
d(x)dx

=

∫
Ω

u(x)

∫
Ω

(u(x) − u(y))w(x, y)dy dx
= 〈u, Lu〉.

Therefore, there is a natural relationship between the weighted inner product and
the nonweighted inner product. This last equation is symmetric when x and y are
interchanged; therefore we can write the energy functional

E(u) =

∫
Ω

∫
Ω

(u(x) − u(y))2w(x, y) dy dx =
1

2
〈u, (Lwu)〉d(x).

Note that the energy 〈u, Lwu〉d(x) is a well-defined energy functional. The gradient
flow in the weighted norm 〈·〉d(x) is

∂u

∂t
= −Lwu = −(u(x)−NL(u)(x)).

This equation describes a diffusion process using the NLM operator.
Zhou and Scholkopf [59] and Gilboa and Osher [28, 29] derive a calculus based

on the nonlocal operators, the former for the discrete graph case and the latter in a
continuum setting that was subsequently discretized in computational examples. Zhou
and Scholkopf mainly study graph versions of the Poisson equation and its variants.
In the continuum case, Gilboa and Osher define the nonlocal derivative for y, x ∈ Ω
as

∂yu(x) = (u(y)− u(x))
√
w(x, y),(5.2)
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where 0 ≤ w(x, y) < ∞ is the symmetric weight matrix in (2.8). Their nonlocal
gradient ∇wu : Ω→ Ω× Ω has the form

(∇wu)(x, y) = (u(x)− u(y))
√
w(x, y).

The nonlocal divergence divw�v(x) : Ω× Ω→ Ω is

(divw�v)(x) =

∫
Ω

(v(x, y) − v(y, x))
√
w(x, y)dy,

which is the adjoint of the nonlocal gradient using the above inner product. Finally,
the nonlocal Laplacian can be written as

∇2
wu(x) =

1

2
divw(∇wu(x)) = −

∫
Ω

(u(x) − u(y))w(x, y)dy.(5.3)

This equation is the continuous equivalent of the standard graph Laplacian, which is
a different normalization from the one we use. Gilboa and Osher use this calculus
to establish a nonlocal TV energy functional which proves to be highly effective for
problems in image inpainting and SSL. It would be interesting to establish a formal
connection between our GL algorithm and the NL-TV method.

5.3. Geometric diffusion. Coifman et al. [15] discuss a diffusion map formu-
lation to investigate the inherent structure in data and to segment high dimensional
datasets. Their construction consists of defining a weight matrix w(x, y) with admis-
sibility properties satisfied by the Gaussian similarity function w(x, y) = exp(−||x−
y||2/τ) used in this paper. A major contribution of geometric diffusion is the observa-
tion that a correctly normalized graph Laplacian operator converges to the Laplace–
Beltrami operator on a manifold.

A data segmentation procedure was introduced by Coifman et al. using a geomet-
ric diffusion approach [15]. The technique was adapted to images by Szlam, Maggioni,
and Coifman in [47]. Let Ω1 be the set of points in class one, let Ω2 be the set of
points in class two, and let Ω3 be the unlabeled points. Their procedure for a two
class segmentation problem consists of the following steps:

1. Initialize the functions

u
(i)
0 (x) =

{
1, x ∈ Ωi,

0 otherwise.
(5.4)

2. Create the similarity function wLB(x, y) using feature vectors derived from a
neighborhood of each pixel.

3. Diagonalize the matrix wLB(x, y) =
∑

j λjφj(x)φj(y). This step can be per-
formed using the Nystöm extension.

4. Calculate u
(i)
t (x) =

∑
j λ

t
jφj(x)

∫
φj(y)u

(i)
0 (y)dy, where the parameter t is

chosen by cross-validation with the initial labels.

5. At each point x, assign the class according to argmaxi {u(i)t (x)}.
This equation exploits the result that wLB is an approximation to the Laplace–
Beltrami operator, and therefore wLB is an approximation to the fundamental solution
of the Laplace–Beltrami operator [37].

6. Conclusion. In summary, this paper develops a class of algorithms for ap-
proximating L1 (TV) regularization for classification of high dimensional data. The
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algorithms are inspired by classical physical models for diffuse interfaces involving mul-
tiple scales, including a diffuse interface scale typically smaller than the bulk features
of the problem. Such models have recently been introduced to the image processing
literature and have been rigorously connected to methods based on TV. These models
are known to produce reasonably sharp edges in image problems, provided that the
diffuse interface scale is smaller than the features of interest in the image. By analogy
we develop a graph-based method in which the graph Laplacian takes on the role of
the spatial Laplace operator in the physical problem. Fast methods can be derived for
solving the minimization problem, provided that a reasonably fast algorithm exists for
diagonalizing the graph Laplacian. For the classical physics problem there are well-
known methods based on the fast Fourier transform which diagonalizes the Laplace
operator. For our problem we consider standard sparse matrix methods in the case
of sparse graphs and the Nyström extension in the case of highly connected graphs.
In all cases we find the results to be comparable to state-of-the-art L1 methods but
with a faster computing time.

This paper is the first step in developing the GL functional for classification of
graph-based data. Many interesting open problems remain. One simple observation
is that our iterative method is based on numerical solution of a gradient descent for a
nonlinear functional. We use fixed time steps for this method, and one would expect
possibly significant speedup with an efficient variable time step method. One also can
exploit variation in the scale parameter ε during this minimization procedure. This
idea was used to great advantage in earlier work on image inpainting using the Cahn–
Hilliard equation [7, 6]. While the theory of Gamma convergence is well known for
the classical GL operator and for its wavelet-based cousin [18], no such theory exists
for the graph-based problem, and this is a very interesting and important problem.
Our results suggest that the two should be connected but no rigorous results exist to
date. Finally we mention that the GL functional leads to a simplified algorithm for
piecewise-constant image segmentation using a carefully designed alternation between
evolution of the heat equation and thresholding [23]. The same kind of procedure
could be extended to our method although again it would be important to develop a
theoretical framework for this idea and its best practice.

Acknowledgments. We thank Lawrence Carin, John Greer, Gary Hewer, Stan-
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