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Abstract. There are currently several communities working on algorithms for classification of
high dimensional data. This work develops a class of variational algorithms that combine recent
ideas from spectral methods on graphs with nonlinear edge/region detection methods traditionally
used in in the PDE-based imaging community. The algorithms are based on the Ginzburg-Landau
functional which has classical PDE connections to total variation minimization. Convex-splitting
algorithms allow us to quickly find minimizers of the proposed model and take advantage of fast
spectral solvers of linear graph-theoretic problems. We present diverse computational examples
involving both basic clustering and semi-supervised learning for different applications. Case studies
include feature identification in images, segmentation in social networks, and segmentation of shapes
in high dimensional datasets.
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This work brings together ideas from different communities and for this reason
we review various components of the algorithms in order to make the paper accessi-
ble to readers familiar with either the PDE-based or graph-theoretic approaches. In
Section 1 we review diffuse interface methods in Euclidean space and convex splitting
methods for minimization. These well-known constructions make heavy use of the
classical Laplace operator and our new algorithms involve extensions of this idea to
a more general graph Laplacian. Section 2 reviews some of the notation and defini-
tions of the graph Laplacian and this discussion contains a level of detail appropriate
for readers less familiar with this machinery. Included in this section is a review of
segmentation using spatial clustering and a discussion of various normalization con-
ventions for these linear operators on graphs, in connection to real world problems
such as machine learning in image analysis. The rest of the paper explains the main
computational algorithm and presents different examples involving both sparse con-
nectivity and non-sparse connectivity of the graph. The algorithms have a multi-scale
flavor due to (a) the different scales inherent in diffuse interface methods and (b) the
role of scale in the eigenfunctions and eigenvalues of the graph Laplacian.

1. Background on diffuse interfaces, image processing, and convex split-
ting methods. Diffuse interface models in Euclidean space are often built around
the Ginzburg-Landau functional

GL(u) =
ε

2

∫
|∇u|2dx+

1

ε

∫
W (u)dx

where W is a double well potential. For example W (u) = 1
4 (u2 − 1)2 has minimizers

at plus and minus one. The operator ∇ denotes the spatial gradient operator and
the first term in GL is ε/2 times the H1 semi-norm of u. The small parameter ε
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represents a spatial scale, the diffuse interface scale. This paper investigates replacing
the spatial gradient operator ∇ with a more general gradient operator on graphs.

Diffuse interface models with spatial gradient operators are multi-scale because
several length scales exist in the model, the smallest being the diffuse interface scale
ε. The construction of the GL functional requires ε to have units of length so that
the two terms have balanced units. Also, note that the double well typically restricts
u to take on integral order values (between zero and one).

Multiple timescales exist in evolution equations that make use of this functional.
The most common examples are the Allen-Cahn equation, which is the L2 gradient
descent of this functional, and the Cahn-Hilliard equation, which is a gradient descent
in the H−1 inner product. For Cahn-Hilliard one sees three distinct time-scales on
large domains. The short time scale segregates the solution into the two species
defined by the double well. During the intermediate time scale interfacial dynamics
between the species dominates [2, 44], and during the long time-scale a coarsening,
with power-law scaling, of the species is seen to occur [37]. Recent work has gone into
developing efficient numerical schemes to track these dynamics [36, 53, 35, 8].

The model is called “diffuse interface” because there is a competition between the
two terms in the energy functional. Upon minimization of this functional, the double
well will force u to go to either one or negative one, however the H1 term forces u
to have some smoothness, thereby removing sharp jumps between the two minima of
W . The resulting minimization leads to regions where u is approximately one, regions
where it is approximately negative one, and a very thin, O(ε) scale transition regions
between the two. Thus the minimizer appears to have two phases with an interface
between them. For this reason such models are often referred to as “phase field”
models when one considers dynamic evolution equations built around this energy
functional.

There are several interesting features of GL minimizers. For example, the transi-
tion region between the two phases typically has some length associated with it and
the GL functional is roughly proportional to this length. This can be made rigorous
by considering the notion of Gamma convergence of the Ginzburg-Landau functional.
It is known to converge [38] to the total variation semi-norm,

GL(u)→Γ C|u|TV .

The Allen-Cahn and Cahn-Hilliard models both have limiting evolutions, in some
sense, as ε → 0. The Allen-Cahn equation converges to the classical motion by
mean curvature [34], whereas the Cahn-Hilliard dynamics behaves like the nonlocal
Mullins-Sekerka problem [2, 44]. Much more structure arises when dynamical models
are considered, depending on the choice of inner product and of other issues for the
flow. Weighted inner product spaces or gradient flows in the Wasserstein metric,
for which optimal transport techniques are relevant, are possible modifications. The
simplest example of L2 gradient flow and the resulting Allen-Cahn dynamics will be
the focus of this paper.

1.1. The connection between GL and image processing. The Ginzburg-
Landau functional is sometimes used in image processing as an alternative or a relative
to the TV semi-norm. Because of the gamma convergence, these two functionals can
sometimes be interchanged. Moreover, the highest order term in the GL functional
is purely quadratic allowing for fast minimization schemes in some problems. Recent
advances in TV minimization procedures, e.g. split Bregman and graph cut methods



DIFFUSE INTERFACE MODELS ON GRAPHS 3

[31, 16], have made this less necessary, nevertheless there are cases where the pure
TV case is not enough and the diffuse interface version may be a simpler method.

Some examples of GL in image processing include the motivation for the Esedoglu-
Tsai [23] threshold method for Chan-Vese segmentation [12]. Although the GL is not
ultimately used in their method the construction of their method is directly built
on the GL functional, rather than the TV method of the original Chan-Vese paper
[12]. We also note that this method was inspired by the original Merriman-Bence-
Osher paper [42]. Another example is work by Riccardo March [21, 11] and Esedoglu
[20, 22]. The work by Ambrosio-Tortorelli [3] is well known in image processing for
diffuse interface approximations.

In a typical application we want to minimize an energy functional of the form

E(u) = GL(u) + λF (u, u0)

where F (u, u0) is a fitting term to known data. In the case of denoising, F (u, u0) is
often just an L2 fit,

∫
(u−u0)2. In the case of deblurring it is

∫
(K ∗u−u0)2, or the L2

of the blurred solution with the data. For inpainting we often have an L2 to known
data in the region where the data is known, i.e.

∫
Ω

(u−u0)2. In some instances in the
above a different norm is used, e.g. L1 or other norms. In the case of Cahn-Hilliard
based inpainting, the method is not strictly a gradient flow [7, 6], but rather based
on gradient flows. In fact the method is a sort of hybrid in which the L2 least squares
fitting term is paired with the Cahn-Hilliard H−1 dynamics. The result is a method
that achieves both boundary conditions for inpainting. Namely, continuation of both
greyscale information and direction of edges across the inpainting domain. The higher
order evolution is important for that application and is related to the geometry of the
problem.

The energy E(u) can be minimized in the L2 sense using a gradient descent, which
gives us a modified Allen-Cahn equation

ut = −δGL
δu
− λδF

δu
= ε∆u− 1

ε
W ′(u)− λδF

δu
.

This can be evolved to steady state to obtain a local minimizer of the energy E. We
note that in general, especially for the GL functional, that E is not convex and thus
may have multiple local energy minima. The result is that the long time behavior of
the solution of the modified Allen-Cahn equation will depend on the initial condition.

1.2. Convex splitting and time stepping of the GL functional. One of the
reasons to choose the GL functional instead of TV is that the minimization procedure
for GL often involves the first variation of GL for which the highest order term,
involving the Laplace operator, is linear. Thus if one has fast solvers for the Laplace
operator or relatives of it, one can take advantage of this in designing convex splitting
schemes discussed below.

A particular class of fast solvers are ones in which the Laplacian can be trans-
formed so that the operator diagonalizes. A classical example would be the Fast
Fourier Transform which transforms the Laplace operator to multiplication by −|k|2
where k is the wave number of the Fourier mode. The FFT works because the Fourier
modes are also eigenfunctions of the Laplace operator. An example of this use in
long-time solutions of the Cahn-Hilliard equation is discussed in detail in [53]. Other
recent advances for fast Poisson solvers could be used as well (see e.g. [41]). In
our graph-based examples we use fast methods for directly diagonalizing the graph
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Laplacian, either through standard sparse linear agebra routines, or in the case of
fully connected weighted graphs, Nyström extension methods.

Convex splitting schemes are based on the idea that an energy functional can be
written as the sum of convex and concave parts,

E(u) = Evex(u)− Ecave(u)

where this decomposition is certainly not unique because we can add and subtract any
convex function and not change E but certainly change the convex/concave splitting.
The idea behind convex splitting for the gradient descent problem is to perform a
time stepping scheme in which the convex part is done implicitly and the concave
part explicitly. More precisely the convex splitting scheme is

un+1 − un

dt
= −δEvex

δu
(un+1) +

δEcave
δu

(un). (1.1)

The art then lies in choosing the splitting so that the resulting scheme is stable and
also computationally efficient to solve. This method was popularized by a well-known
but unpublished manuscript by David Eyre [24]. It has been used to solve the Cahn
Hilliard equation on large domains and on long time intervals [53] and also in imaging
applications involving Cahn-Hilliard [7] and a wavelet version of the method proposed
here for graphs [18]. This same idea has also been directly discussed in the context of
general minimization procedures for nonconvex functionals [59].

2. Generalizations of the GL functional to graphs. One can consider a
generalization of the GL functional to Graphs. This is in the same spirit as the
work of Dobrosotskaya and the first author [18] generalizing the GL functional to
wavelets. In their work they construct a linear operator with similar features to the
Laplace operator, however the eigenfunctions are the wavelet basis, for some choice
of wavelets. The natural choice of eigenvalues are ones that scale like the inverse
square of the length scale of the wavelet basis functions, much in the same way that
the eigenvalues of the Laplace operator are the inverse square of the period of the
corresponding eigenfunction.

In this section we describe how to generalize the Ginzburg Landau functional, or
more precisely its L2 gradient flow, to the case of functions defined on graphs [14]. One
challenge is the normalization of the Laplacian due to the fact that we are working
with purely discrete functionals that may not have a direct spatial embedding.

2.1. Graph definitions and notation. Consider an undirected graph G =
(V,E) with vertex set V = {νn}Nn=1 and edge set E. The edge set of an unweighted
graph can be defined from a binary weight function w(ν, µ) where

w(ν, µ) =

{
1 if there exists an edge joining vertex ν and vertex µ with ν, µ ∈ V ,
0 if no edge exists joining ν and µ with ν, µ ∈ V .

(2.1)
The degree of a vertex ν ∈ V is defined as

d(ν) =
∑
µ∈V

w(ν, µ). (2.2)

Note that, by the definition of w(ν, µ), d(ν) simply counts the number of connections
between two elements u, v in the vertex set V . The degree matrix D can then be
defined as the N ×N diagonal matrix with diagonal elements d(ν).
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The size of a subset A ⊂ V will be important for segmentation using graph theory,
and there are two important size measurements. For A ⊂ V define

|A| := the number of vertices in A, (2.3)

vol(A) :=
∑
ν∈A

d(ν). (2.4)

The topology of the graph will also be important. A subset A ⊂ V of a graph is
connected if any two vertices in A can be joined by a path such that all the points
also lie in A. A subset of A is called a connected component if it is connected and if
A and A are not connected. The sets A1, A2, . . . , Ak form a partition of the graph if
Ai ∩Aj = ∅ and ∪kAk = V .

The graph Laplacian is the main tool for graph theory based segmentation. Define
the graph Laplacian L(ν, µ) as

L(ν, µ) =

{
d(ν) if ν = µ,

−w(ν, µ) otherwise.
(2.5)

The graph Laplacian can be written in matrix form as L = D −W where W is the
matrix w(ν, µ). The following definition and property of L will play an important
role:

1. (Quadratic Form) For every vector u ∈ RN

〈u, Lu〉 =
1

2

∑
µ,ν∈V

w(ν, µ)(u(ν)− u(µ))2 (2.6)

2. (Eigenvalue) L has N non-negative, real valued eigenvalues with 0 = λ̃1 ≤
λ̃2 ≤ · · · ≤ λ̃N , and the eigenvector of λ̃1 is the constant N dimensional one
vector 1N .

The Quadratic form is exploited to define a minimization procedure as in the Allen-
Chan equation above. The Eigenvalue condition gives limitations on the spectral
decomposition of the matrix L. These spectral properties are essential for spectral
clustering algorithms discussed below.

The above construction can be easily generalized to weighted graphs. A weighted
undirected graph [14] has an associated weight function w : V × V → R satisfying
w(ν, µ) = w(µ, ν) and w(ν, µ) ≥ 0. The definition for the degree of the vertex d(ν)
and the volume of a subset A, vol(A), and the graph Laplacian are the same as the
unweighted graph.

There are two popular normalization procedures for the graph Laplacian, and the
normalization has segmentation consequences [14, 54]. The normalization that will
be used in this work is the symmetric Laplacian Ls defined as

Ls = D−1/2LD−1/2 = I −D−1/2WD−1/2. (2.7)

The symmetric Laplacian is named as such since it is a symmetric matrix. The random
walk Laplacian is another important normalization given by

Lw = D−1L = I −D−1W. (2.8)

The random walk Laplacian is closely related to discrete Markov processes, and we
discuss the use of the random walk Laplacian in section 5.2.
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The spectrum of the graph Laplacian plays an important role for graph segmen-
tation, and some well known results are collected here for future reference. The
spectrum of Ls and Lw are the same, but the eigenvectors are different. The easily
verifiable spectral relationships between Lw and Ls are listed below.

1. λ̃ is an eigenvalue of Lw if and only if λ̃ is an eigenvalue of Ls.
2. ψ is an eigenvalue of Lw if and only if D1/2ψ is an eigenvector of Ls.
3. λ̃ is an eigenvalue of Lw with eigenvector ψ if and only if Lψ = λ̃Dψ.

2.2. Segmentation, spectral clustering, and the graph Laplacian. The
goal of graph clustering is to partition the vertices into groups according to their
similarities. Consider the weight function as a measure of the similarities, then the
graph problem is equivalent to finding a partition of the vertices such that the sum of
the edge weights between the groups are small compared with the sum of the edges
within the groups. The weighted graph minimization algorithms in their original form
are NP complete problems [54]; therefore a relaxed problem was formulated by Shi
and Malik [46] where the minimization function is allowed to be real valued, and such
minimization problems are equivalent to the spectral clustering methods.

The segmentation problem naturally generates a graph structure from a set of
vertices vi each of which is assigned a vector zi ∈ RK . For example, when considering
voting records of the US House of Representatives, each representative defines a vertex
and their voting record defines a vector. A different example arises when considering
similarity between regions in image data. Each pixel defines a vertex and one can
assign a high dimensional vector to that pixel by comparing similarities between
the neighborhood around that pixel and that of any other pixel. Given such an
association, a symmetric weight matrix can be created using a symmetric function
ŵ(x, y) : RK ×RK → R+. In particular, if νi(y) = zi represents the vector associated
with the vertex νi, then the weight matrix w(νi, µj) = ŵ(νi(z), µj(z)) = ŵ(zi, zj) is
a positive symmetric function. We will abuse notation and not distinguish between
these two functions and write w(νi, µj) = ŵ(zi, zj) = w(zi, zj). Similar statements
are true for any function u : V → R. Spectral clustering algorithms for binary
segmentation consist of the following steps:

Input: A set of vertices V with the associated set of vectors Z ⊂ RK , a similarity
measure w(x, y) : RK ×RK → R+, and the integer k of clusters to construct.

1. Calculate the weight function w(x, y) for all x, y ∈ Z.
2. Compute the graph Laplacian L.
3. Compute the second eigenvector ψ2 of L or the second eigenvector ψ2 of the

generalized eigenvalue problem Lψ = λDψ.
4. Segment ψ2 into two clusters using k-means (with k = 2).

Output: A partition of V (or equivalently Z) into two clusters A and A.

Two characteristics of the spectral clustering algorithms should be highlighted. First,
the algorithm determines clusters using a k-means algorithm. We note that the k-
means algorithm is used to construct a partition of the real valued output, and any
algorithm that performs this goal can be substituted for the k-means algorithm. For
example, Lang [40] uses separating hyperplanes. A partitioning algorithm is needed
since the relaxed problem does not force the final output function f to be binary
valued. We address this problem by using the Ginzburg-Landau potential.

The second characteristic is that spectral clustering finds natural clusters through
a constrained minimization problem. The constrained minimization problem exploits
a finite number of eigenfunctions depending on the a-priori chosen number of clusters.
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A significant difference in our method is that we utilize all the eigenfunctions in our
variational problem. One can interpret this as an issue of the number of scales that
need to be resolved to perform the desired classification. For spectral clustering to
work, the eigenfunctions used must capture all the relevant scales in the problem. By
using all the eigenfunctions we resolve essentially all the scales in the problem, modulo
the choice of ε. In the classical differential equation problem ε selects a smallest length
scale to be resolved for the interfacial problem. An analogous role could occur in the
graph problem and thus it would make sense to use this method on large dataset
problems rather than relatively small problems, for which other methods might be
simpler.

2.3. Proper normalization of the graph Laplacian with scale. An impor-
tant issue with non-local operators are the behavior of the operators with increased
sample size. Increasing sample size for the discrete Laplace operator corresponds to
decreasing the grid size, and this operator must be correctly normalized in order to
guarantee convergence to the differential Laplacian. We note that in the case of the
classical finite difference problem for PDEs the entire matrix is multiplied by N2

where N is the number of vertices in one of the dimensions, this is essentially 1/dx,
the spatial grid size. Recall that the largest eigenvalue of the operator scales like
N2 or 1/dx2, which gives a stiffness constraint for forward time stepping of the heat
equation, as a function of grid size. Moreover, with this scaling, the graph Laplacian
converges to the continuum differential operator in the limit of large sample size, i.e.
as N →∞ where N is the grid resolution along one of the coordinate axes.

Proper normalization conditions for convergence also exist for the graph Lapla-
cian. The issue of sample size also comes into play but rather than convergence
to a differential operator, we consider the density of vertices, in the case of spatial
embeddings, which can be measured by the degree of each vertex. The normalized
Laplace operator as defined in (2.7) is known to have the correct scaling for spectral
convergence of the operator in the limit of large sample size.

We make the following assumptions:

1. The set of k vectors Z = {zi}Ni=1 was sampled from a manifold in RK ,
2. each sample is drawn from an unknown distribution µ(z),
3. the graph Laplacian is a graph representation of the integrating kernel w(x, y)

with vertex set V , and
4. each vector in Z is assigned a vertex and weighted edges w(x, y) between

every x, y ∈ Z.

Consistency and practicality of the method requires similar and useful solutions as the
number of samples increases [56, 54, 55]. Furthermore, the computational methods
must be stable. The stability of the computational methods will be discussed first.

Note that the eigenvectors of the discrete Laplacian converge to the eigenvec-
tors of the Laplacian, i.e. the discrete Fourier modes converge to the continuous
Fourier modes. Similarly, it has been shown that the spectrum of the graph Lapla-
cian converges (compactly) to the corresponding integral operator [55]. We note that,
as stated in [54], there is a dilemma with the convergence for clustering applica-
tions. In summary, the unnormalized Laplacian converges to the operator L defined
by (Lu)(x) = d(x)u(x) −

∫
Ω
w(x, y)u(y)dy while the normalized Laplacian converges

to Ls defined by (Lsu)(x) = u(x) −
∫

Ω
(w(x, y)/

√
d(x)d(y))u(y)dy. Both operators

are a sum of two operators, a multiplication operator and the operator w(x, y) or
w(x, y)/

√
d(x)d(y). The operators with kernels w(x, y) and w(x, y)/

√
d(x)d(y) are
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Fig. 2.1. Eigenfunctions from the graph Laplacian obtained from the cow image in Section 4.3.
The left three images are eigenvectors of the unnormalized Laplacian L as in (2.5). The right three
images are eigenvectors of the symmetric graph Laplacian Ls as defined in (2.7).

compact and thus have a countable spectrum. The operators d(x) and the identity
operator 1 are multiplication operators, but the operator d(x) has an a-priori un-
known value while the identity operator has an isolated eigenvalue. Note that the
spectrum of a multiplication is the essential range of the operator d(x); therefore, by
perturbation theory results, the essential spectrum of L is the essential spectrum of
d(x) [56].

Perturbation theory does not imply anything about the convergence of the eigen-
values inside the essential spectrum of the operator L. Therefore, we do not know if
the function L is consistent if we increase the number of samples. This problem is
avoided if the normalized Laplacian is used instead.

This normalization discussion is not pedantic, and the importance of correct nor-
malization is shown in Figure 2.1. The right three images are example eigenvectors of
the symmetric graph Laplacian Ls. Notice that the eigenvectors form reasonable seg-
mentation of the images. For example, the first eigenvector distinguishes between the
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sky and cows, the second eigenvector separates the cows from the background, and the
last eigenvector separates the two cows. The left three images are examples eigenval-
ues of the unnormalized Laplacian L. The spectrum of the unnormalized Laplacian
(2.5) is dominated by large spikes at a few pixels. In contrast, the eigenfunctions
on the normalized symmetric Laplacian (2.7) provide appealing segmentations of the
image.

2.4. Semi-supervised Learning (SSL) on Graphs. The graph segmentation
problems automatically find a decomposition of the vertices V into A and A according
to an energy minimization procedure. The input are positive and symmetric edge
weights that are used to form the graph Laplacian and the number of desired clusters
k. The problem considered here is semi-supervised learning, and the basic model for
a two class problem consists of the following elements:

1. A set of N samples Z = Y ∪X, one sample per vertex, with zi ∈ RK ,
2. A set of labels f = {f(yi)}ki=1 for each yi ∈ Y where f(yi) = ±1,
3. A set of l vectors X = {xi} for all i such that f(xi) is unknown.

The goal of SSL is to label the entire set of samples Z given the labels f(y) for
all y ∈ Y . A common approach in the literature is to learn a real valued function
u(y) and then threshold the output of this function to determine the class labels
f(y) = sign(u(y)).

The Ginzburg-Landau energy on graphs can be used to find a function u that is
approximately one on a set of vectors A1 and negative one on another set of vectors
A−1 with a transition region A0 between the two sets. The entire set of samples
Y = A1 ∪A−1 ∪A0; therefore, there is a possibly empty set of vectors A0 that do not
contain precise class labels.

The relationship between graph cuts and the Ginzburg-Landau phase field so-
lution implies that the Ginzburg-Landau function minimizes a weighted graph cut
between two regions (see section 5.1). The graph cut solution may not be appropri-
ate, however, given the original set of labels. This problem is mitigated by including
a fidelity term in the minimization problem. Let u0 be the original labels on the data
and define the function

λ(z) =

{
1 if z ∈ Y
0 if z ∈ X.

The Ginzburg-Landau functional for SSL is therefore

E(u) =
ε

2
〈u, Lsu〉+

1

4ε

∑
z∈Z

(u2(z)− 1)2 +
∑
z∈Z

λ(z)

2
(u(z)− u0(z))2. (2.9)

The fidelity term uses a least-squares fit, allowing for a small amount of misclassifi-
cation (i.e. noisy data) in the information supplied.

There are numerous approaches to SSL using graph theory, and we mention a
few that are related to this work. The work of Coifman, Szlam and others [15, 50]
demonstrate techniques to learn classes using a diffusion framework. Their technique
implements the Geometric Diffusion framework with a random walk probability in-
terpretation. Instead of minimizing an energy functional, they find a time s when the
marginal between known classes is maximized and then classify the rest of the sam-
ples using this diffusion time s. The final segmentation is dominated by the smallest
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eigenvalues of the random walk graph Laplacian. In contrast our method is based on
an extension of a nonlinear geometric segmentation method applied to general graphs
rather than lattices embedded in Euclidean space.

The work of Gilboa and Osher [28, 29] is another closely related technique, in-
spired in part by earlier work of Morel et al [9] for denoising. They use the graph
Laplacian with an explicit forward time stepping scheme. The explicit time stepping
introduces a stiffness constraint (discussed below) that slows the rate of convergence.
Furthermore, their algorithm is stopped at an arbitrary stopping time while the tech-
nique proposed here has an automated stopping criteria.

In the paper [29], a nonlinear nonlocal TV based method is developed which has
remarkable results for texture-based inpainting, although the computational time is
not so fast. Our method is a different way of approaching this problem by using
the GL functional instead of TV and by taking advantage of fast algorithms for the
minimization problem by using the Nyström extension for the graph Laplacian.

2.5. Choice of similarity function. The choice of similarity function w(x, y) is
application dependent, but some observations are appropriate. There are two factors
to consider when choosing w(x, y). First, the choice of weight function must reflect the
desired outcome. For segmentation, this typically involves choosing an appropriate
metric on a vector space. Our examples below used the standard Euclidean norm,
but other norms may be more appropriate. For example, the angle norm may work
better for segmentation of hyperspectral images. A second consideration is algorithm
speed. The segmentation algorithms below requires the diagonalization of w(x, y),
and this step is often the rate limiting procedure. There are two main methods to
obtain speed in the diagonalization. The first method is to use the Nyström extension
described in section 3.2. This method does not require a modification of w(x, y), and
calculations on large graphs with connections between every vertex is possible.

The second method is to create a sparse graph. A sparse graph can be created by
only keeping the N largest values of w(x, y) for each fixed x. Note that such a graph
is not symmetric, but it can easily be made symmetric to aid in computation.

We list the two techniques to create the similarity function w(x, y) used in this
paper.

1. The Gaussian function

w(x, y) = exp(−||x− y||2/τ) (2.10)

is a common similarity function. Depending on the choice of metric, this
similarity function includes the Yaroslavsky filter [58] and the the non-local
means filter [9].

2. Zelnik-Manor and Perona introduced local scaling weights for sparse matrix
computations [60]. They start with a metric d(xi, xj) between each sample

point. The idea is to define a local parameter
√
τ(xi) for each xi. The choice

in [60] is
√
τ(xi) = d(xi, xM ) where xM is the M th closest vector to xi. In

[60], M = 7, while in this work and [49] M = 10. The similarity matrix is
then defined as

w(x, y) = exp

(
− d(x, y)2√

τ(x)τ(y)

)
. (2.11)

This similarity matrix is better at segmentation when there are multiple scales
that need to be segmented simultaneously.
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3. Computational algorithm. In this section we go into greater detail regard-
ing the numerical scheme used to find the minimizers of the variational problem. There
are two main components to the algorithm - the choice of splitting schemes (1.1) and
the computation of the basis functions as eigenfunctions of the graph Laplacian. We
cover both below.

3.1. Convex splitting scheme. Our choice of splitting is motived by prior
work on GL-type functionals for image processing with fidelity [18, 7, 6]. First we
review the algorithm as it applies to differential operators in the classical Ginzburg-
Landau regularization. An efficient convex splitting scheme can be derived by writing
the Ginzburg-Landau energy with fidelity as

E(u) = E1(u)− E2(u)

with

E1(u) =
ε

2

∫
|∇u(x)|2dx+

c

2

∫
|u(x)|2dx, (3.1)

E2(u) = − 1

4ε

∫
(u(x)2 − 1)2dx+

c

2

∫
|u(x)|2dx−

∫
λ(x)

2
(u(x)− u0(x))2dx.(3.2)

Note that the energy E2 is not strictly concave, but we can choose the constant c
such that it is concave for u near and in between the potential wells of (u2−1)2. This
scheme was chosen so the nonlinear term is in the explicit part of the splitting.

Given the above splitting and since the Fourier transform diagonalizes the Laplace
operator, the following numerical scheme solves the Euler-Lagrange equations.

a
(n)
k =

∫
eikxu(n)(x) dx

b
(n)
k =

∫
eikx(u(n))3(x) dx

d
(n)
k =

∫
eikxλ(x)(u(n)(x)− u0(x)) dx

Dk = 1 + dt (ε k2 + c)

a
(n+1)
k = D−1

k

[(
1 +

dt

ε
+ c dt

)
a

(n)
k − dt

ε
b
(n)
k − dt

(
d

(n)
k

)]
.

Note that the H1 semi norm is convex and thus appeared in the convex part of
the energy splitting. The first variation of that yields the Laplace operator which is
a stiff operator to have in an evolution equation. The stiffness results because the
eigenvalues of the Laplace operator range from order one negative values to minus
infinity. Or in the case of a discrete approximation of the Laplace operator, the
eigenvalues range from order one to minus one divided by the square of the smallest
length scale of resolution (e.g. the spatial grid size in a finite element or finite difference
approximation). By projecting onto the eigenfunctions of the Laplacian, we see that
there are many different timescales of decay in the spatial operator and all must be
resolved numerically in the case of a forward time stepping scheme. However when the
Laplace operator is evaluated implicitly, at the new time level, one need not resolve
the fastest timescales in the time-stepping scheme.

The same time-stepping scheme can be used if the spectral decomposition of
the graph Laplacian is used instead of the Laplacian, and we can use the spectral
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decomposition for any of the graph Laplacians L,Lw, or Ls. We used the spectrum
of Ls due to the convergence and scaling issues discussed above. Here is a summary
of the method as used in this paper:

Decompose the solution u(n) at each time step according to the known eigenvectors
{φk(x)} of Ls:

u(n)(x) =
∑
k

a
(n)
k φk(x).

Likewise we need to decompose the pointwise cube of u and the fidelity term,

[u(n)(x)]3 =
∑
k

b
(n)
k φk(x),

λ(x)
(
u(n)(x)− u0(x)

)
=
∑
k

d
(n)
k φk(x).

Then the algorithm for the next iteration is given in terms of the coefficients for

u(n+1)(x) =
∑
k

a
(n+1)
k φk(x)

in terms of its decomposition using the eigenfunctions of Ls again as a basis for the
solution. Define λ̃k to be the eigenvalue associated with the eigenfunction φk(x), i.e.

Lsφk = λ̃kφk ; then the update equation for a
(n)
k is

Dk = 1 + dt (ε λ̃k + c),

a
(n+1)
k = D−1

k

[(
1 +

dt

ε
+ c dt

)
a

(n)
k − dt

ε
b
(n)
k − dt

(
d

(n)
k

)]
. (3.3)

Convex Splitting for the Graph Laplacian

1. Input ← an initial function u0 and the eigenvalue-eigenvector pairs
(λ̃k, φk(x)) for the graph Laplacian Ls from Equation (2.7).

2. Set convexity parameter c and interface scale ε from Equation (3.2).
3. Set the time step dt.

4. Initialize a
(0)
k =

∫
u(x)φk(x) dx.

5. Initialize b
(0)
k =

∫
[u0(x)]3φk(x) dx.

6. Initialize d
(0)
k = 0.

7. Calculate Dk = 1 + dt (ε λ̃k + c).
8. For n less than a set number of iterations M

(a) a
(n+1)
k = D−1

k

[(
1 + dt

ε + c dt
)
a

(n)
k − dt

ε b
(n)
k − dtd(n)

k

]
(b) u(n+1)(x) =

∑
k a

(n+1)
k φk(x)

(c) b
(n+1)
k =

∫
[u(n+1)(x)]3φk(x) dx

(d) d
(n+1)
k =

∫
λ(x)

(
u(n+1)(x)− u0(x)

)
φk(x) dx

9. end for
10. Output ← the function u(M)(x).

This is a generalization of a classical ‘psuedospectral’ scheme for PDEs in which

one goes back and forth between the spectral domain (the coefficients a
(n)
i ) and the
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graph domain in which we evaluate u directly at every vertex on the graph. The
latter must be done in order to compute the cube [u(n)(x)]3 and the fidelity term
λ(x)

(
u(n)(x)− u0(x)

)
which can then be projected back to the spectral domain. Here

the convex temporal splitting is very important because it effectively removes the
stiffness inherent in the diverse time scales that arise from the range of eigenvalues
of the graph Laplacian. Our proposed method is only useful if one has a fast method
for determining the eigenfunctions φk(x) and their corresponding eigenvalues. For
the case of fully connected graphs we use the Nyström extension reviewed in the next
subsection.

3.2. Nyström extension for fully connected graphs. The spectral decom-
position of the matrix Ls is related to the spectral decomposition

D−1/2WD−1/2φ = ξφ

through the relationship

Lsφ = (1−D−1/2WD−1/2)φ

= (1− ξ)φ = λ̃φ.

Therefore, the convex splitting scheme is efficient if the spectral decomposition of
the matrix D−1/2WD−1/2 can be quickly found. The matrix W , however, is a large
matrix and it cannot be assumed that the matrix will be sparse. We use the Nyström
extension discussed by Fowlkes et al. [26, 5, 25] to address this issue.

The Nyström method is a technique to perform matrix completion that has been
used in a variety of image processing applications including spectral clustering [43],
kernel principle component analysis [19], and fast Gaussian process calculations. Be-
low we review the Nyström method as used in this paper. Although the method is
well-known in the graph theory community, we include a summary of the ideas here
for the benefit of readers not familiar with these techniques (including the PDE com-
munity who may be interested in extending these ideas to general graph problems).

The Nyström method approximates the eigenvalue equation∫
Ω

w(y, x)φ(x) dx = γφ(y)

using a quadrature rule. Recall that a quadrature rule is a technique to find L
interpolation weights aj(y) and a set of L interpolation points X = {xj} such that

L∑
j=1

aj(y)φ(xj) =

∫
Ω

w(y, x)φ(x) dx+ E(y),

where E(x) is the error in the approximation. Our model, however, does not allow us
to choose the interpolation points, but rather the interpolation points are randomly
samples from some sample space.

Let Z = {zi}Ni=1 be a set of sample points from an underlying probability space.
In this work, the Nyström method is used to approximate the eigenvalues of the
matrix W with components w(zi, zj). A randomly sampled subset X = {xi}Li=1 of
the points Z will be used as the interpolation points, and the interpolation weights
are the values of the weight function aj(y) = w(y, xj).

Partition Z into two sets X and Y with Z = X ∪Y and X ∩Y = ∅. Furthermore,
create the set X by randomly sampling L points from Z. Let φk(x) be the kth
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eigenvector for W . The Nyström extension approximates the value of φk(yi), up to a
scaling factor, using the system of equations∑

xj∈X
w(yi, xj)φk(xj) = γφk(yi). (3.4)

This equation cannot be calculated directly since the eigenvectors φk(x) are not ini-
tially known. This problem is overcome by first approximating the eigenvectors of W
with the eigenvectors of a sub-matrix of W . These approximate eigenvalues, however,
may not be orthogonal. The approximate eigenvectors will then be orthogonalized,
and this final set of eigenvectors will serve as an approximation to the eigenvectors
of the complete matrix W . Note that since only a subset of the matrix W is initially
used, only a subset of the eigenvectors can be approximated using this method.

The notation

WXY =

 w(x1, y1) . . . w(x1, yN−L)
...

. . .
...

w(xL, y1) . . . w(xL, yN−L)

 (3.5)

will be used in this section. Similarly, define the matrices WXX and WY Y and the
vectors φX and φY . The matrix W ∈ RK × RK and vectors φ ∈ RK can be written
as

W =

[
WXX WXY

WY X WY Y

]
,

and φ =
[
φTX φTY

]T
with φT denoting the transpose operation.

The spectral decomposition of WXX is WXX = BXΓBTX where BX is the eigen-
vector matrix of WXX with each column an eigenvector and Γ = diag(γ1, γ2, . . . , γL)
are the corresponding eigenvalues. The Nyström extension of Equation 3.4 in matrix
form using the interpolation points X is

ΓBY = WY XBX . (3.6)

In short, the n eigenvectors of W are approximated by B =
[
BTX (WY XBXΓ−1)T

]T
.

The associated approximation of W = BΓBT is

W =

[
WXX WXY

WY X WY XW
−1
XXWXY

]
.

From this equation, it can be shown that the large matrix WY Y is approximated by

WY Y ≈WY XW
−1
XXWXY .

As mentioned in [26], the quality of the approximation to WY Y is given by the norm
||WY Y −WY XW

−1
XXWXY ||, and this is determined by how well WY Y is spanned by

the columns of WXY .
This decomposition is unsatisfactory since the approximate eigenvectors φi(x)

defined above are not orthogonal. This deficiency can be fixed using the following
trick. For arbitrary unitary A and diagonal matrix Ξ then if

Φ =

[
WXX

WY X

]
(BXΓ−1/2BTX)(AΞ−1/2) (3.7)
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the matrix W can be written as W = ΦΞΦT . We are therefore free to choose A unitary
such that ΦTΦ = 1. If such a matrix A can be found, then the matrix W will be
diagonalized using the unitary matrix Φ. Define the operator Y = (AΞ)−1/2, then
the proper choice of A is given through the relationship

ΦTΦ = (Y T )−1/2WXXY
−1/2 + (Y T )−1/2W

−1/2
XX WXYWY XW

−1/2
XX Y −1/2.

If ΦTΦ = 1 then after multiplying the last equation on the right by Ξ1/2A1/2 and on
the left by the transpose we have

ATΓA = WXX +W
−1/2
XX WXYWY XW

−1/2
XX . (3.8)

Therefore, if the matrix WXX + W
−1/2
XX WXYWY XW

−1/2
XX is diagonalized, then its

spectral decomposition can be used to find an approximate orthogonal decomposition
of W with eigenvectors Φ given by Equation 3.7.

The matrix W must also be normalized in order to use Ls for segmentation.
Normalization of the matrix is a straightforward application of Equation 3.7. In
particular, let 1K be the K dimensional unit vector, then define [dTX d

T
Y ]T as

[
dX
dY

]
=

[
WXX WXY

WY X WY XW
−1
XXWXY

] [
1K

1N−L

]
=

[
WXX 1K +WXY 1N−L

WY X 1K + (WY XW
−1
X WXY ) 1N−L

]
.

Let A./B denote component-wise division between two matrices A and B and x yT

the outer product of two vectors, then the matrices WXX and WXY can be normalized
by

WXX = WXX ./(sXs
T
X),

WXY = WXY ./(sXs
T
Y ), (3.9)

where sX =
√
dX and sY =

√
dY .

The Nyström extension can be summarized by the following pseudo code.
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Nyström Extension for Symmetric Graph Laplacian
1. Input ← a set of features Z = {xi}Ni=1

2. Partition the set Z into Z = X ∪ Y where X consists of L randomly
selected elements.

3. Calculate WXX and WXY using Equation 3.5.
4. dX = WXX1L +WXY 1N−L.
5. dY = WY X1L + (WY XW

−1
XXWXY ) 1N−L.

6. sX =
√
dX and sY =

√
dY .

7. WXX = WXX ./(sXs
T
X).

8. WXY = WXY ./(sXs
T
Y ).

9. BXΓBTX = WXX (using the SVD).
10. S = BXΓ−1/2BTX .
11. Q = WXX + S(WXYWY X)S.
12. AΞAT = Q (using the SVD).

13. Φ =

[
BXΓ1/2

WY XBXΓ−1/2

]
BTX(AΞ−1/2) diagonalizes W .

14. Output ← the Ls eigenvalue-eigenvector pairs (φi, λ̃i) where φi is the ith

column of Φ and λ̃i = 1− ξi with ξi the ith diagonal element of Ξ.

4. Classification on graphs. The Ginzburg-Landau energy functional can be
used for unsupervised and semi-supervised classification learning on graphs. This
section gives examples of three classifications problems. In particular, we investigate
the house voting records of 1984 from the UCI machine learning database [27], the Two
Moons example dataset of Bühler and von Luxberg [10], and an image segmentation
problem.

Each of the classification examples follows the same general procedure. Given a
set of vertices V = {νi}Ni=1, the general procedure consists of the following SSL steps:

1. Determine Features: For each vertex νi, determine a feature vector zi.
2. Build Graph: Determine edge weights using either formula (2.10) or (2.11)

and build an undirected graph based on these weights.
3. Initialization: Initialize a function u(zi) based on any a-priori knowledge.
4. Minimization: Minimize the Ginzburg-Landau energy functional with ap-

propriate constraints and fidelity term(s). Note that for all experiments we
use the normalized Laplacian Ls.

5. Segmentation: Segment the vertices into two classes according to f(zi) =
sgn(u(zi)).

Each of the vertices represent the objects that we want to segment, and the feature
vectors provide distinguishing characteristics between the objects.

4.1. House voting records from 1984. The US House or Representatives
voting records data set consists of 435 individuals where each individual represents a
vertex of the graph. The goal is to use SSL to segment the data into the two party
affiliation Democrat or Republican. The SSL algorithm was performed by assuming
a party affiliation of five individuals, two Democrats and Three Republicans, and
segmenting the rest. The votes were taken in 1984 from the 98th United States
Congress, 2nd session.

A 16 dimensional feature vector was created using 16 votes recorded for each
individual in the following manner. A yes vote was set to one, while a no vote was
set to negative one. The voting records had a third category, a did not vote category.
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Fig. 4.1. The error rate of segmenting the house votes. We tested the accuracy of the segmen-
tation when the most predictive votes were removed. The segmentation procedure was reproduced
where we removed the top two, four, six, and eight most predictive votes to investigate the robustness
of the algorithm.

Each did not vote recording was represented by a zero in the feature vector. A fully
weighted graph was then created using Gaussian similarity function (2.10) with τ = .3.

The function u(z) was initialized to one for the two Democrats, negative one for
the three Republicans, and zero for the rest of the classes. The Ginzburg-Landau
function with fidelity, equation (2.9), was then minimized using the convex splitting
algorithm with parameters c = 1, dt = 0.1, ε = 2, and 500 iterations. In the fidelity
terms, we chose λ = 1 for each of the five known individuals and λ = 0 for the rest.
This segmentation yielded 95.13% correct results. Note that due to the small size of
this graph we did not use the Nyström extension to compute the spectrum.

The probability of the party affiliation given the vote was above 90% for some of
the votes. We investigated the accuracy of the segmentation when these votes were
removed. Figure 4.1 shows the accuracy of the method when the 14, 12, 10, and 8
least predictive votes were used for the analysis, and we obtained 91.42%, 90.95%,
85.92%, and 77.49% respective accuracy.

The work of Ratanamahatana and Gunopulos [45] studies this dataset using a
naive Bayesian decision tree method. They obtained 96.6% classification accuracy
using 80% of the data for training and 20% for classification. In contrast, our method
uses only 1.15% of the data (5 samples out of 435) to obtain a classification accuracy
of 95.13%. The work of Gionis et al. [30] uses clustering aggregation to automatically
determine the number of classes and class membership. Their method obtains 89%
correct classification in contrast to our 95.13%, in which we specify two clusters.

4.2. Two moons. The two moon dataset was used by Bühler et al. [10] and
Szlam et al. [48, 49] in connection with spectral clustering using the p-Laplacian. This
data set is constructed using two half circles in R2 with radius one. The first half
circle is contained in the upper half plane with a center at the origin, while the second
half circle is created by taking the half circle in the lower half plane and shifting it to
(1, .5). The two half circles are then embedded in R100. Two thousand data points
are sampled from the circles and independent and identically distributed Gaussian
noise with standard deviation .02 is added to each of the 100 dimensions. The goal is
to segment the two half circles using unsupervised segmentation. The unsupervised
segmentation is accomplished by adding a mean zero constraint to the variational
problem.

In order to make quantitative comparisons, we build the graph following the
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Fig. 4.2. The left hand figure is the segmentation achieved by thresholding the second eigenvec-
tor of the graph Laplacian. The right hand image is the segmentation obtained from the algorithm
presented in this paper. This algorithm segmented this data set with an error rate of 2.1%.

ε c no. iterations
10 0.2 500
2 1 200

1.5 1.33 200
1 2 200

Table 4.1
Table of parameter values for the GL functional for the two moons segmentation. The parameter

dt = 0.1 was used throughout along with the formula (2.11) to construct the weighted graph.

procedure described in Szlam and Bresson [48, 49] and Bühler [10]. They created a
10 nearest neighbor weighted graph from the data using the self-tuning weights of
Zelnik-Manor and Perona [60] discussed in Section 2.5 where M was set to 10. This
is a difficult segmentation problem since the embedding and noise creates a complex
graphical structure.

We initialize the function u(z) using the second eigenfunction of the Laplacian.
More specifically, we set u(z) = sgn(φ2(z)− φ2) where φ2(z) is the second eigenfunc-
tion and φ2 is the mean of the second eigenfunction. We minimize the Ginzburg-
Landau energy (2.9) with the mean constraint

∫
u(x)dx = 0, but without any fidelity

terms. The Nyström extension is ineffective for sparse graphs. Instead, we used the
first 20 eigenvectors using Matlab’s sparse matrix algorithms.

Figure 4.2 compares the classical spectral clustering method with our method.
Parameters for the Ginzburg-Landau minimization problem are shown in Table 4.1
and its caption. The left hand figure is the segmentation achieved by thresholding the
eigenvector of the two moons data set. Clearly, spectral clustering using the second
eigenvector of the Laplacian does not segment the two half moons accurately. The
right hand image is the segmentation obtained from the algorithm presented in this
paper. This algorithm segmented this data set with an error rate of 2.1%.

Reducing the Ginzburg-Landau energy parameter ε raises the potential barrier
between the two states in the Ginzburg-Landau potential function and reduces the
effect of the graph weights. Reducing ε corresponds to reducing the scale of the
graph and allows for a sharper transition between the two states. The change in
scale is shown in figure 4.3 where better segmentation was achieved with reduced ε.
The ε = 10 case is essentially the spectral clustering solution, while the ε = 2 case
closely resembles the 1-Laplacian solution of Bühler and Hein [10]. A high quality
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Fig. 4.3. The parameter ε determines a scale for the Ginzburg-Landau energy functional. A
more accurate segmentation is obtained as the ε scale parameter decreases. The percentage of correct
classification was 82.85%, 90.75%, and 94.55% for ε = 10, 2.6, and 2 respectively.

segmentation in which 94.55% of the samples were classified correct occurs when the
parameter ε was set to two. This is contrasted with the second eigenvector spectral
clustering technique that obtained 82.85% correct classification, essentially equivalent
to the large ε = 10 case.

Better segmentation can be achieved if the algorithm is repeated while reduc-
ing ε using the last segmentation as the initialization. The method of successive
reductions in ε was used for image inpainting via the Cahn-Hilliard equation [6,
7]. In [6] the authors carefully study the space of steady states for a stripe in-
painting example in which the problem exhibits an incomplete supercritical pitch-
fork birfurcation as the scale parameter ε is varied. Different methods of reduc-
ing ε could lead to different local minima of the energy functional, along the two
stable branches of the pitchfork. Such a detailed study is beyond the scope of
this paper, however we can examine a segmentation, shown in Figure 4.4, where
ε is reduced from 2 to 1 in steps of .5. The final segmentation gives 97.7% ac-
curacy. We compared this segmentation to the 1-Laplacian Inverse Power Method
(IPM) of Bühler and Hein [33]. (The code is freely obtainable from www.ml.uni-
saarland.de/code/oneSpectralClustering/oneSpectralClustering.html.) The Normal-
ized 1-Laplacian algorithm of Bühler and Hein with 10 initializations and 5 inner
loops was used to obtain 97.3% accuracy for this data set. The computational time
and accuracy of the 1-Laplacian method and the Ginzburg-Landau technique is shown
in figure 4.5. The Ginzburg-Landau technique of this paper was able to obtain more
accurate results in less computational time. No additional effort was made in our
numerical tests to reduce run time - for example the large number of iterations may
not be necessary with an adaptive dt or a better initialization. Speedup in other
problems can easily be an order of magnitude when making such adjustments. Even
so the run time is very fast.

4.3. Image labeling. The objective of image segmentation is to partition an
image into multiple components where each component is a set of pixels. Furthermore,
each component represents a certain object or class of objects. We are interested in
the binary segmentation problem where each pixel can belong to one of two classes.

Most image segmentation algorithms assume that a segmented region is connected
in the image. We need not make this assumption. Instead, we build a graph based
on feature vectors derived from a neighborhood of each pixel, and segment the image
based on a partition of the graph. The graph based segmentation allows us to label
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Fig. 4.4. The 1-Laplacian and the Ginzburg-Landau clustering methods obtains nearly identical
results for unsupervised clustering on the Half Moon dataset. The 1-Laplacian and Ginzburg-Landau
percentage error was 97.3% and 97.9% respectively.

Fig. 4.5. The accuracy of the Ginzburg-Landau unsupervised segmentation procedure presented
in this paper is compared with spectral clustering and the 1-Laplacian code of Hein and Bühler [33].
These two graphs were created using 100 runs of the two moon data set and averaging the results.

the unknown content of one image based on the known content of another image.
As input to our segmentation algorithm we take two images where one of the images
has been hand segmented into two classes. The goal is to automatically segment the
second image based on the segmentation of the first image.

Each pixel y represents a vertex of the graph. The features vectors associated to
each vertex y is defined using a pixel neighborhood N(y) around y. For example, a
typical choice for a pixel neighborhood on a Cartesian grid Ω = Z2 is the set

N(y) = {z ∈ Ω : |z1 − y1|+ |z2 − y2| ≤M},

for some integer M . A feature vector derived from a finite sized neighborhood of a
pixel is called a pixel neighborhood feature.

Let I be an image, then an example of a pixel neighborhood feature is the set of
image pixel values z(y) = I(N(y)) chosen in a consistent order. Another example is
to calculate a collection of filter responses for each pixel, i.e. z(x) = ((g1 ∗ I)(x), (g2 ∗
I)(x), . . . , (gj ∗ I)(x)) where gi represents a filter for each i, and ∗ is the convolution
operator. The proper choice of neighborhood and features are application dependent.
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Note that a neighborhood system is equivalent to an edge system in graph theory
[13], but the neighborhood system used to determine pixel neighborhood features is
not the same as the graph used to generate the graph Laplacian.

Original Labeled Image Unlabeled Image 

Regions with Grass Label 

Regions with Cow Label 

Regions with Sky Label 

Grass Label Transferred 

Cow Label Transferred 

Sky Label Transferred 

Fig. 4.6. The labels from the original upper left hand image was transferred to the upper right
hand image. The individual results for each region is shown in the lower images. Note that the
algorithm is robust to mislabeled sections. Furthermore, the algorithm can identify regions that we
do not know a label for such as the wall in the right hand images.

A fully connected graph is generated using the pixels from two images as vetices
and the weight matrix w(x, y) for edge weights. This graph construction is very
general and can be used to segment many different types of objects based on their
determining features. For example, color and texture features are appropriate for
segmenting trees and grass from other objects. We also note that the metric used
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Original Image Training Region 

Image to Segment  Segmented Region 

Fig. 4.7. The robustness of the algorithm to lighting conditions and changes in texture is shown.
The upper left hand image is the original image with the upper right hand the training region. The
lower left hand image was segmented using the training region in the upper right hand image, and
the segmentation is shown in the lower right hand image.

in the weight matrix can be modified depending on the data set. For example, the
spectral angle may be more appropriate for segmentation of hyperspectral images.

We demonstrate the image labeling technique using cow images from the Microsoft
image database, and on face segmentation. The feature vectors used for the Microsoft
image database and the face segmentation were respectively the Varma-Zisserman
MR8 texture features [52] and the Weijer-Schmid Hue features [51]. The MR8 texture
feature are robust to rotation and are translational invariant. The Hue features are
invariant to photometric transformations.

On the hand labeled image, the function u(z) was initialized to one for one of
the classes and negative one for the other class. The function u(z) was initialized to
zero on the unlabeled image. The graph Laplacian is constructed using (2.10). The
Ginzburg-Landau energy with fidelity was then minimized. The parameter values were
as follows: τ = .1, dt = .01, ε = .1, c = 21, and 500 iterations. The fidelity term Λ
was set to one on the initial image and to zero on the unknown image. The Nyström
extension was used to determine the spectral decomposition of the weight matrix.
The labels of the second image was then determined by the sign of u(z) on the second
image. Results of the segmentation for the Microsoft database is shown in Figure
4.6. Note that the algorithm is robust to mislabeling in the initial image. Another
example is given in Figure 4.7 where a face from the Computational Vision database
[1] was segmented. In both examples, the predominant features were identified, and
some of the pixels with few representative features were removed. For example, the
nose and eye of the brown cow were removed from the segmentation and the eyes and
eyebrows of the face was removed.
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5. Connection to previous methods in the literature. We discuss the con-
nection between our algorithm and related methods from the literature. In the final
section we present some open problems.

5.1. Graph cuts. Spectral clustering and graph segmentation methods are re-
lated through the graph cut objective function. For two disjoint subsets A,B,⊂ V ,
define the graph cut of two sets as

cut(A,B) =
∑

x∈A,y∈B
w(x, y).

The function cut(A,B) is smaller when there are less weights on the connections
between the sets A and B.

The mincut problem involves finding a partition {A,A} of V that minimizes
cut(A,A), where A is the complement of A. Stoer and Wagner [47] have an efficient
algorithm for this problem. The mincut problem, however, leads to poor classification
performance for many problems since isolated points often form one cluster and the
rest of the points form another cluster. Modifications to the min-cut problem include
a normalization of either |A| or vol(A) as a measure of the size. This procedure leads
to minimization of one of the following

RatioCut(A,A) =
cut(A,A)

|A|
+
cut(A,A)

|A|
,

Ncut(A,A) =
cut(A,A)

vol(A)
+
cut(A,A)

vol(A)
.

The sum is minimized when either |A| or vol(A) is the same as |A| or vol(A) respec-
tively. In other words, the number of vertices or sum of the edge weights must be
close to the same in each partition. This balance turns the mincut problem into an
NP hard problem [57]. Spectral clustering techniques relaxes the balancing conditions
to approximately solve a simpler version of the mincut problem.

The relaxed minimization of the RatioCut is

min
A⊂Y
〈u, Lu〉 such that u ⊥ 1 and ||u||2 = |Y |.

The relaxed problem is a norm minimization with two constraints, an L2 constraint
and a subspace constraint.

Similar to the RatioCut segmentation procedure the relaxed NCut problem is

min
A⊂Y
〈u, Lsu〉 such that u ⊥ D1/21, and ||u||2 = vol(Y ).

This minimization problem is in the form of the Raleigh-Ritz theorem, and the solution
is again given by the second eigenvector of Ls. We emphasize that the difference
between the relaxed problem and the true graph cut solution is that the relaxed
problem determines a real valued solution while the graph cut problem finds a binary
solution. The relaxation from the discrete problem to the real valued problem does
not always yield an approximation to the Ncut or RatioCut problem even for the
binary segmentation problem. See for example [32]. The relaxed problem has been
used for many segmentation problems and it produces appealing results [46].

Minimizing the Ginzburg-Landau energy functional with the mass constraint
u ⊥ 1 produces a graph cut problem that is different than the other spectral clus-
tering methods and it reintroduces a nearly binary valued solution. Recall that the
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Ginzburg-Landau potential term encourages the variational solution u to take values
±1. Assume that these are the only two values for the variational solution, then the
normalized graph Laplacian is

〈u, Lsu〉 = C + 4
∑

x∈Ay∈A

w(x, y)√
d(x)d(y)

− 2

 ∑
x∈A, y∈A

w(x, y)√
d(x)d(y)

+
∑

x∈A, y∈A

w(x, y)√
d(x)d(y)

 ,

where C is a constant that depends on the graph but not the partition. Note that a
mass constraint (or a fidelity constraint) will prevent the trivial solution with every
element in a single set. It is clear from this representation that the graph cut is
minimized when the normalized weights between the partitions is small, while the
normalized weights within the partition remains large.

The graph p-Laplacian is a generalization of the graph Laplacian due to Amb-
hibech [4]. The graph p-Laplacian is the operator Lp that satisfies the equation

〈u, Lpu〉 =
1

2

N∑
i,j=1

wij |ui − uj |p.

Spectral clustering was accomplished by Bühler and Hein using the graph p-Laplacian
[10]. They defined the eigenvectors of the graph p-Laplacian using the Rayleigh-Ritz
principle where the functional to be minimized is

Fp(u) =
〈u, Lpu〉
||u||pp

.

The work of Szlam and Bresson [48, 49] demonstrated that the solution of the
relaxed version of the 1-Laplacian is identical to the unrelaxed version. They then de-
rived a Split-Bregman algorithm to find an approximate solution to the 1-Laplacian.
Another approximation method was derived by Bühler and Hein to solve the 1-
Laplacian [33]. Their algorithm was used in this work to compare to the Ginzburg-
Landau segmentation procedure.

5.2. Non-local means. Buades, Coll, and Morel described the following non-
local filtering, non-local means (NLM), procedure for noise removal in images. Define
the non-local operator

NL(u)(x) =
1

d(x)

∫
Ω

w(x, y)u(y) dy,

with

||u(x)− u(y)||a =

∫
Ω

Ga(t)|u(x+ t)− u(y + t)|2dt,

w(x, y) = exp

(
−||u(x)− u(y))||a

h2

)
, d(x) =

∫
Ω

w(x, y)dy, (5.1)

and Ga(t) a Gaussian with standard deviation a.
Similar to the segmentation in section 4.3, the norm ||·||a is defined using an image

neighborhood. Unlike section 4.3, the NLM algorithm uses a Gaussian weighted norm
so the values of pixels closer to the center pixel has a larger influences on the similarity
between two neighborhoods.
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Given this analog with graph theory, the NLM weight matrix can be related
to the random walk graph Laplacian. A comparison of equations (2.8) and (5.1)
demonstrates that NL(u)(x) = D−1W . Substituting NL(u)(x) = D−1W into (2.8)
gives the relationship

Lw = 1−NL(u)(x).

The operator Lw, and therefore the NLM operator, naturally occurs in the gradi-
ent flow of a weighted L2 norm. To see this, consider the weighted L2 inner product

〈u, v〉d(x) =

∫
Ω

u(x) v(x) d(x)dx,

where d(x) is the degree function. With this inner product we can write

〈u, Lwu〉d(x) =

∫
Ω

u(x)

(∫
Ω

(u(x)− u(y))
1

d(x)
w(x, y)dy

)
d(x)dx

=

∫
Ω

u(x)

∫
Ω

(u(x)− u(y))w(x, y)dy dx

= 〈u, Lu〉.

Therefore, there is a natural relationship between the weighted inner product and
the non-weighted inner product. This last equation is symmetric when x and y are
interchanged, therefore we can write the energy functional

E(u) =

∫
Ω

∫
Ω

(u(x)− u(y))2w(x, y) dy dx =
1

2
〈u, (Lwu)〉d(x).

Note that the energy 〈u, Lwu〉d(x) is a well defined energy functional. The gradient
flow in the weighted norm 〈·〉d(x)is

∂u

∂t
= −Lwu = −(u(x)−NL(u)(x)).

This equation describes a diffusion process using the NLM operator.
Zhou and Scholkopf [61] and Gilboa and Osher [28, 29] derive a calculus based

on the nonlocal operators. The former for the discrete graph case and the latter in
a continuum setting that was subsequently discretized in computational examples.
Zhou and Scholkopf mainly study graph versions of the Poisson equation and its
variants. In the continuum case, Gilboa and Osher define the nonlocal derivative for
y, x ∈ Ω as

∂yu(x) = (u(y)− u(x))
√
w(x, y), (5.2)

where 0 ≤ w(x, y) < ∞ is the symmetric weight matrix in (2.1). Their nonlocal
gradient ∇wu : Ω→ Ω× Ωhas the form

(∇wu)(x, y) = (u(x)− u(y))
√
w(x, y).

The nonlocal divergence divw~v(x) : Ω× Ω→ Ω is

(divw~v)(x) =

∫
Ω

(v(x, y)− v(y, x))
√
w(x, y)dy,
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which is the adjoint of the nonlocal gradient using the above inner product. Finally,
the nonlocal Laplacian can be written as

∇2
wu(x) =

1

2
divw(∇wu(x)) = −

∫
Ω

(u(x)− u(y))w(x, y)dy. (5.3)

This equation is the continuous equivalent of the standard graph Laplacian, which is
a different normalization from the one we use. Gilboa and Osher use this calculus
to establish a nonlocal total variation energy functional which proves to be highly
effective for problems in image inpainting and semi-supervised learning. It would be
interesting to establish a formal connection between our Ginzburg-Landau algorithm
and the NL-TV method.

5.3. Geometric diffusion. Coifman et. al in [15] discuss a diffusion map
formulation to investigate the inherent structure in data, and to segment high di-
mensional data sets. Their construction consists of defining a weight matrix w(x, y)
with admissibility properties satisfied by the Gaussian similarity function w(x, y) =
exp(−||x − y||2/τ) used in this paper. A major contribution of geometric diffusion
is the observation that a correctly normalized graph Laplacian operator converges to
the Laplace-Beltrami operator on a manifold.

A data segmentation procedure was introduced by Coifman et al. using Geometric
Diffusion approach [15]. The technique was adapted to images by Szlam, Maggioni
and Coifman in [50]. Let Ω1 be the set of points in class one, Ω2 be the set of
points in class two, and Ω3 be the unlabeled points. Their procedure for a two class
segmentation problem consists of the following steps:

1. Initialize the functions

u
(i)
0 (x) =

{
1 x ∈ Ωi

0 otherwise.
(5.4)

2. Create the similarity function wLB(x, y) using feature vectors derived from a
neighborhood of each pixel.

3. Diagonalize the matrix wLB(x, y) =
∑
j λjφj(x)φj(y). This step can be per-

formed using the Nystöm extension.

4. Calculate u
(i)
t (x) =

∑
j λ

t
jφj(x)

∫
φj(y)u

(i)
0 (y)dy, where the parameter t is

chosen by cross-validation with the initial labels.

5. At each point x, assign the class according to argmaxi {u(i)
t (x)}.

This equation exploits the result that wLB is an approximation to the Laplace-
Beltrami operator, and therefore wLB is an approximation to the fundamental solution
of the Laplace-Beltrami operator [39].

6. Conclusion. In summary, this paper develops a class of algorithms for ap-
proximating L1 (TV) regularization for classification of high dimensional data. The
algorithms are inspired by classical physical models for diffuse interfaces involving
multiple scales, including a diffuse interface scale typically smaller than the bulk
features of the problem. Such models have recently been introduced to the image
processing literature and have been rigorously connected to methods based on total
variation. These models are known to produce reasonably sharp edges in image prob-
lems provided the diffuse interface scale is smaller than the features of interest in the
image. By analogy we develop a graph-based method in which the graph Laplacian
takes on the role of the spatial Laplace operator in the physical problem. Fast meth-
ods can be derived for solving the minimization problem provided that a reasonably
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fast algorithm exists for diagonalizing the graph Laplacian. For the classical physics
problem there are well-known methods based on the fast Fourier transform which di-
agonalizes the Laplace operator. For our problem we consider standard sparse matrix
methods in the case of sparse graphs and the Nyström extension in the case of highly
connected graphs. In all cases we find the results to be comparable to state of the art
L1-methods but with a faster compute time.

This paper is the first step in developing the Ginzburg-Landau functional for clas-
sification of graph-based data. Many interesting open problems remain. One simple
observation is that our iterative method is based on numerical solution of a gradient
descent for a nonlinear functional. We use fixed time steps for this method and one
would expect possibly significant speed up with an efficient variable time step method.
One also can exploit variation in the scale parameter ε during this minimization proce-
dure. This idea was used to great advantage in earlier work on image inpainting using
the Cahn-Hilliard equation [7, 6]. While the theory of gamma convergence is well-
known for the classical Ginzberg-Landau operator and for its wavelet-based cousin
[17], no such theory exists for the graph-based problem and this is a very interesting
and important problem. Our results suggest that the two should be connected but no
rigorous results exist to date. Finally we mention that the GL functional leads to a
simplified algorithm for piecewise-constant image segmentation using a carefully de-
signed alternation between evolution of the heat equation and thresholding [23]. The
same kind of procedure could be extended to our method although again it would be
important to develop a theoretical framework for this idea and its best practice.
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[6] Andrea Bertozzi, Selim Esedoḡlu, and Alan Gillette. Analysis of a two-scale Cahn-Hilliard

model for binary image inpainting. Multiscale Model. Simul., 6(3):913–936, 2007.
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