Math 149 W02 BB.

Cubic Bézier curves

1. Overview

Bézier curves are a method of designing polynomial curve segments when
you want to control their shape in an easy way. Bézier curves make sense
for any degree, but we’ll concentrate on cubic ones, the most important case.
(“Bézier” = “Bay zee ay”.)

To specify a cubic Bézier curve, you give four points, called control points.
The first and last are on the curve; the middle two may not be. When you
change the control points, the shape of the curve changes. It is helpful to
indicate the control points by connecting them with line segments to form
the “control polygon” (although this is not a polygon in the usual sense, as
it is not closed). Some examples are shown in Figure 1.

Figure 1: Some Bézier curves

It does not matter which end you consider to be the first and which the
last; you get the same points for the curve either way. Observe that the curve
is tangent to the first and last “legs” of the control polygon.

BB 1



2. Detalils

The Bézier curve is just a particular linear combination of the control
points with time-varying coefficients. If the control points are Py, P;, P, Ps,
then the curve is given by

Pt)=(1—=t>°Py+3(1 —t)*P +3(1 —t)t* P, + t*P3, for 0 <t < 1

Why these coefficients? They arise in a way related to binomial expan-
sions. Recall that (s +¢)® = s* 4+ 3s%t + 3st* + ¢3. Now consider these terms
individually rather than added together, and put (1 — ¢) for s. You get four
functions of ¢, called the Bernstein polynomials. These are

Jao(t) = (1=t = 1 )

J1(t) = 31 —0)* = 31—t
Js2t) = 3(1—0)* = 3(1—1t)H?
J33(t) = t3 = 1(1—1)%3

Thus for a Bézier curve,

As you will see, the Bernstein polynomials have nice properties that are
reflected in the properties of Bézier curves. Bernstein polynomials and Bézier
curves can be defined for any degree n by using the expansion of (s + ¢)",
but let’s continue to concentrate on the case of degree 3, since that case is

most frequently used.
Py

Figure 2: Example

Ezxample. Suppose the control polygon has
P, =(2,3), PL=(0,5), P, = (—1,—-2), and P; = (2,1), as in Figure 2. Then
(t) = Jso(t)Po + J3,1(t) Py + J32(t) P + J33(t) Ps

1—1)3(2,3) +3(1 — 1)%(0,5) + 3(1 — )3 (-1, -2) + t3(2,1)
2 — 6t + 3t + 3t3,3 + 6t — 27t + 19¢3)

t
(
= (
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In other words, P(t) = (z(t),y(t)) with z(t) = 2 — 6t + 3t> + 3t and
y(t) = 3 + 6t — 27t? + 19¢3.

3. Some properties of the cubic Bernstein polynomials

e Values at 0 and 1:

J30(0) =1 Jso(1) =0
J51(0)=0 J3.(1)=0
J32(0) =0 Jaa(1) =0
J373(0) =0 J3’3(1) =1

e Unit sum property: Jso(t) + J51(t) + J32(t) + J33(t) = 1 for all ¢.

)

e Nonnegativity: J3, > 0 for 0 <¢ <1.

e Graphs: See Figure 3.

0 1
Figure 3: Graphs of Bernstein polynomials of degree 3

e First derivatives at 0 and 1:

J50(0) = =3 J50(1) =0

J?',,l(o) =3 J§,1(1) =0
2'3,2(0) =0 é,z(l) = -3
33(0) =0 J35(1) =3



e Second derivatives at 0 and 1:

J50(0) =6 Jg(1) =0
51(0) =—12 J5,(1) =6

JéI,Q(O) =0 Jf’;’,2(1) =—12

J35(0) =0  Jys3(1) =6

e Maximum property: The maximum value of J; () occurs at ¢t = %

for k =0,1,2,3.

e Linear sum property: If 2o, z1, 2, 23 are evenly spaced (i.e., form an
arithmetic progression), then for all ¢, zoJ50(t) +1J5 1 (t) + z2J52(t) +
x3J33(t) = xo +t(x3 — o), the linear function that runs from z, to z3
as t runs from 0 to 1.

L] Symmetry: For k = 0, 1, 2, 3, Jg,k(l - t) = J3’3_k(t).

e Basis: J50(t), J51(t), J32(t), J33(t) form a basis for the vector space
of all polynomials of degree at most three. (In contrast, the standard
basis is 1,,12,13.)

. Some properties of cubic Bézier curves

Let P(t) be the Bézier curve with four control points Py, Pi, Ps, Ps.

e Degree: P(t) has degree at most 3 (one less than the number of control
points).
e Special values: P(0) = P, P(1) = Ps.

e Tangency: At t = 0 the Bézier curve is tangent to the first leg of its
control polygon; at t =1 it is tangent to the last leg.

e Convex hull: For 0 < ¢t < 1, the Bézier curve lies entirely in the
convex hull of its control points.

e First derivative at ends: P'(0) = 3(P,— F) and P'(1) = 3(Ps— B).

e Second derivative at ends: P"(0) = 6(P, — 2P, + P,) and P"(1) =
6(P, — 2P, + P3).

e Affine compatibility: The Bézier construction is compatible with
affine transformations 7. In other words, T'(P(t)) is the same as the
point at time ¢ on the Bézier curve with control points T'(F), T'(Fy),
T(PQ)’ T(P3)

BB 4



e Evenly spaced control points: If Py, P, P, P; are evenly spaced
along a straight line, then P(t¢) reduces to the usual parametric form
of a line segment, namely P(t) = Py + t(P; — I%).

e Maximum influence: For k£ = 0,1, 2, 3, the control point P, has its
k

maximum influence (i.e., its coefficient is at a maximum) at time ¢ = 3

e Symmetry: P(1 —t) is the same as the Bézier curve with control
points in the opposite order: P3, Py, Py, F,.

e Half-way point: P(%) is % of the way from the midpoint of the seg-
ment Py P; to the midpoint of the segment P, P,.

e Generality, algebraically: For any cubic parametric curve P(t), its
portion 0 <t <1 is a Bézier curve, for suitable chosen control points.

e Generality, geometrically: Any segment of a cubic parametric curve
has the same points as some Bézier curve (with suitably chosen control
points).

5. Properties of Bézier curves of any degree

Generalizing the idea of a cubic Bézier curve, a Bézier curve of degree at
most n based on n + 1 control points P, ..., P, is defined by

P(t) = Jno(t)Po+ - -+ + Jnn(t)Po,

where the Bernstein polynomial J, x(t) is defined by J, x(t) = (}) (1—t)" %tk
The properties of cubic Bézier curves, listed above, generalize as you might
expect they would. In addition, here is a nice derivative property that ex-

plains some of the derivative properties already mentioned for cubic Bézier
curves:

e Derivative at any point: If P(t) is the Bézier curve with control
points Py, ..., P,, then P'(t) = nQ(t), where Q(t) is the Bézier curve
of degree at most n — 1 based on the control points AP, = P, — P,
APl :PQ—Pl, ,Apnflzpn—Pnfl.

Thus we get a factor of m, reminiscent of the derivative of z", and
another Bézier curve based on differences of control points of P(t).

6. Some applications

1. Making a loop: Use a Bézier curve in which the first and last control
points coincide, as in Figure 4.
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Figure 5: Arcs

. Making an arc: Just use these control points or similar ones, depending
on the shape you want, as in Figure 5.

The control points in this example are (0, 0), (.25,.25), (.75,.25), (1,0).
If you instead want an arc of this exact shape between other given points
Qo and ()1, find an affine matrix that does a rotation, uniform scaling,
and translation to move the segment (0,0)(1,0) to Qy@;. To do this,
write Qo = (¢,d) and (a,b) = @1 — Qp and then use the extended

matrix | —

o o8
QUL o
_— o O

. Making a curved arrow: Add an arrowhead to a curved arc. For the arc
in Figure 5, a suitable arrowhead goes from (.95, 0) to (1,0) to (1,.05).
For a curved arrow with similar shape in a different position, apply an
affine transformation as above. See Figure 6.

Figure 6: A curved arrow

. Making an S-curve: Just use a control polygon of the kind shown in
Figure 7. Adjust as desired. If you add an arrowhead you could use
such a curve in a flow chart to show a path from a box on one level to
a box on a lower level.
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Figure 7: An S-curve

. Hermite data: Suppose you want to find a cubic curve @Q(¢) that has
given values of Q(0), Q(1), @'(0), and Q'(1). Let’s call these values
Qo, @1, Qf, and @)}, respectively. They represent the initial and final
positions and velocity vectors, as indicated in the left diagram below.
This kind of problem is called an Hermite (“air-meet”) problem, after
the French mathematician Hermite. There is exactly one solution.

A solution is to use a Bézier curve with appropriate control points Fp,
P, P, P;. As you see, Py = Qo and P; = Q1. Also, from the first
derivative property, 3(P; — Py) = Qf and 3(P3 — P;) = Q. These last
two equations can be solved for P, and P,. We get these Bézier control
points, as shown in the right-hand portion of Figure 8.

B = Qo
P = Qo+ %Qf)
P, = Q1 —3Q)
Py = 1
Q.
................................... >
Qo 0

Figure 8: Hermite data

7. Problems
Problem BB-1. Prove the half-way-point property of Bézier curves.

Problem BB-2. (a) Find the coordinate functions of the Bézier curve with
control points (0,0), (1,0), (1,1), (0,2). (b) Sketch this curve. (Instead of
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plotting many points, it is usually better to plot a few points and find the
tangent vectors there to tell the direction of the curve.)

Problem BB-3. Here is a graphical construction of a cubic Bézier curve:
For each t value you want, first mark the point corresponding to ¢ on each
segment PyP;, PP, and P,P;. Call the resulting points Qq, Q1, Q. (For
example, if t = %, each @); is the midpoint of its segment.) Then mark the
point corresponding to ¢t on Qo@; and Q;@Q,. Call the resulting points Ry,
R;. Finally mark the point corresponding to ¢t on RyR,;. Call the resulting

point Sp. Then P(t) = S;.

(a) Carry out this construction for the control points in Problem BB-2, for
the cases t = .25, t = .5, t = .75.

(b) Prove algebraically that the construction works. (Express the Q);, R; and
So in terms of ¢ and the P;, and simplify.)

(c) Prove the Half-way Point property by reasoning graphically—why does
the point P(3) come out three-quarters of the way from the midpoint of P Ps
to the midpoint of P, P,?

Problem BB-4. Which of the properties listed for the cubic Bernstein poly-
nomials are fairly evident from the graphs shown, and which are not as evi-
dent?

Problem BB-5. Prove the unit sum property of the cubic Bernstein poly-
nomials.

Problem BB-6. Prove the values given for the first and second derivatives
of the cubic Bernstein polynomials at ¢ =0 and ¢t = 1.

Problem BB-7. Prove the maximum property for the cubic Bernstein poly-
nomials. (Do derivatives help for all k£?)

Problem BB-8. Prove the linear sum property for the cubic Bernstein

polynomials. (One way: First consider just the case where z;, = % for
k = 0,1,2,3. The general case follows from this case and the unit sum

property.)

Problem BB-9. Prove the basis property for the cubic Bernstein polyno-
mials.

(Since the dimension of the vector space is known to be four, it is enough to
show either that the cubic Bernstein polynomials span the vector space or
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that they are linearly independent. For the first way: Show how to express
each of 1,¢,t2,t% as a linear combination of cubic Bernstein polynomials. For
the second way: Given a linear combination that is the zero function, i.e., is
zero for all values of ¢, look at the values of the linear combination at t = 0
and at ¢ = 1 and also the values of the first derivative at the same places.)

Problem BB-10. Give an example of a “cubic” Bézier curve (using the J3 ;)
that actually has (a) degree 1; (b) degree 0; (c) degree 2. (Recall that the
degree of a polynomial parametric curve is the maximum of the degrees of its
coordinate polynomials.)

Problem BB-11. For cubic Bézier curves, verify (a) the formulas for the
first derivatives at ¢ = 0 and ¢t = 1; (b) the formulas for the second derivatives
att = 0and t = 1; (c) the tangency property (by using (a)). (You may quote
any relevant properties of cubic Bernstein polynomials.)

Problem BB-12. Prove this version of Taylor’s Theorem for cubic Bézier
curves: P(t) = P0+3t(P1 —P0)+g6(P0—2P1+P2)+%6(—P0+3P1 —_
3P, + P;). (One method: algebraic expansion. Another method: Verify that
both sides have the same values and first, second, and third derivatives at
t = 0, because then by the regular Taylor's Theorem they must have the
same cubic polynomials for each coordinate.)

Problem BB-13. Prove the convex hull property of cubic Bézier curves.
(You may quote any needed properties of convex combinations and of cubic
Bernstein polynomials.)

Problem BB-14. If the four control points for a cubic Bézier curve are all
equal, then P(t) is constant. Prove this fact two ways: (a) Using the convex
hull property of cubic Bézier curves; and (b) using the unit sum property of
Bernstein polynomials.

Problem BB-15. Consider the affine compatibility property of cubic Bézier
curves. On what property of affine transformations and linear combinations
does it depend?

Problem BB-16. (a) In pictures of examples like those of Section 1, why
is it acceptable not to indicate the x and y axes and a scale? (b) Why is it
acceptable not to indicate which end of the curve has t = 07 (You may quote
relevant properties of Bézier curves, if you explain how they apply.)
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Problem BB-17. Prove the property of Bézier curves with evenly spaced
control points. (You may quote any relevant properties of cubic Bernstein
polynomials.)

Problem BB-18. Find the coordinate functions of the Bézier curve P(t)
for the control points Py = (123,123), P, = (124,124), P, = (125,125), and
P; = (126,126). (Do not attempt a long algebraic method; instead, quote
any relevant properties of Bézier curves.)

Problem BB-19. In the upper left diagram in Figure 1, indicate the point
on the curve where each of the two non-end control points has its maximum
influence. (Trace the curve and control polygon, regard the vertices as the
vertices of the unit square, calculate the two points of maximum influence,
and indicate them.)

Problem BB-20. For an unspecified positive constant A, consider the loop
made by taking a Bézier curve with control points (0, 0), (h,0), (0, k), (0,0).
(a) Find P(3). (b) Find the value of ¢ at which the z coordinate is largest,
and the corresponding point on the curve. (c¢) For what value of A would the
loop just fit inside a unit square?

Problem BB-21. (a) Find control points for a cubic Bézier curve that has
exactly the same shape as the arc in Example 2 of Section 5, but goes from
(1,0) to (2,1). (b) Find points that give an arrowhead so that the whole
curved arrow has exactly the same shape as the one in Example 3 of Section
5.

Problem BB-22. Prove the formulas given for finding Bézier control points
from Hermite data.

Problem BB-23. Sketch a cubic parametric curve Q(¢) such that Q(0) =
(0,1), Q(1) = (0,-1), @(0) = (6,0), and Q'(1) = (6,0).

Problem BB-24. Prove the algebraic generality property of cubic Bézier
curves.

(Method: Write P(t) = (z(t),y(t)). You may quote the “basis” property of
Bernstein polynomials. A suitable linear combination of them gives the z(t),
and similarly for y(¢). How should you choose the control points?)

Problem BB-25. Prove the geometric generality property of cubic Bézier
curves.
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(Method: The difference from the algebraic generality property is that you
must consider any segment of a cubic parametric curve, not just the segment
0 <t < 1. Accordingly, suppose C(t) is a cubic parametric curve and con-
sider a segment given by a <t < b. Say how to make a re-parameterization
Q(t) that gives the same points but for which the same segment is given by
0 <t < 1. Then use the algebraic generality property.)

Problem BB-26. (a) Prove this derivative property of Bernstein polynomi-
als: Jy 1 (t) = n (Jn-14-1(t) — Jn-1(t)), except that a term is omitted if its
second subscript is out of bounds; specifically, J,_1 _1(t) and J,_1,(t) are
omitted.

(Method: You will need the fact that (Z) = k'(n#lk)' Discuss separately

the end cases with omitted terms.)

(b) Prove the “derivative property at any point” for Bézier curves of any
degree, as given in Section 5.

(c) Use the derivative property at any point to prove the derivative properties
listed in Section 4 for cubic Bézier curves.

Problem BB-27. (a) Starting from the fact that (s + ¢)? = s? + 2st +
2, invent the quadratic Bernstein polynomials and define quadratic Bézier
curves (using three control points). (b) Sketch the quadratic Bézier curve
with control points (1,0), (0,0), (0,1) for 0 < ¢ < 1. (c) Extend your sketch
to —2<t<3.

Problem BB-28. Show that in R? any quadratic Bézier curve with non-
collinear control points can be mapped onto any other quadratic Bézier curve
with non-collinear control points by a suitable affine transformation, so that
the control polygon of the first is mapped onto the control polygon of the
second.

(“Noncollinear” means “not in a straight line”. You may assume any needed
properties of quadratic Bézier curves that are similar to properties of cubic
Bézier curves. These curves are parabolas (unless they are lines), so this
problem says that arbitrary parabolas can be taken to arbitrary parabolas
by an affine transformation, but it says more: This can be done so that the ¢
values match up, with P(¢) on one curve going to Q(t) on the other for every

)

Problem BB-29. Find the coordinate functions z(t), y(t), 2(t) of a Bézier
curve in R? with control points (0,0, 0), (1,0,0), (0,1,0), (0,0,1).
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Problem BB-30. Show that in R?, any nonplanar cubic Bézier curve can
be mapped by an affine transformation to any other nonplanar Bézier curve.
(You may quote any relevant properties of Bézier curves.)

Problem BB-31. Show that as a parametric function of ¢, the first deriva-
tive of the cubic Bézier curve with control points P, ..., P; is the same as
the quadratic Bézier curve with control points 3(P, — %), 3(P, — P;), and
3(P; — P,). (One method: Expand both sides. Another method: Verify that
both sides have the same values and first, second, and third derivatives at
t = 0, because then by Taylor’s Theorem they must have the same cubic
polynomials for each coordinate.)

Problem BB-32. A certain machine tool is programmed to follow a cubic
Bézier curve in R?. However, it is not necessarily at point P(t) at time t.
Instead, the x and y coordinates are driven by separate identical motors and
there is a maximum rate at which each motor can go. Therefore the machine
is programmed so that at any moment either the z motor or the y motor is
going at its maximum speed, whether forwards or backwards. For example,
it might be that for the points with 0 < ¢ < .21 on the curve, the  motor is
at its maximum rate, then for .21 < ¢ < .53, the y motor is at its maximum
rate, and then for .53 < ¢ < 1.0 the z motor is at its maximum rate again.
In this example, there were three ranges of . Find the maximum number of
ranges there could be for a cubic Bézier curve in general.

(Method: Imagine the path in R? of the velocity vector P'(t). By Problem
BB-31, this curve is a quadratic Bézier curve itself. By an earlier problem,
the graph is a parabola. In which regions of R? is the z-motor limiting, and
in which regions is the y-motor limiting? Into how many pieces could the
curve be broken by these regions?)

Problem BB-33. For given Hermite data, is there necessarily a quadratic
Bézier curve that satisfies the data? (Either give a method or give a coun-
terexample.)

Problem BB-34. (a) Invent a “half-way derivative” property for cubic
Bézier curves, by expressing P'(1) in terms of the control points and looking
for a geometrical interpretation. (It will involve a vector between midpoints
of two sides of the control polygon, times a factor.)

(b) Show that at ¢t =  the curve is parallel to the line segment joining the
midpoints of the first and last legs of the control polygon.

Problem BB-35. When we say a “cubic” Bézier curve we really mean
a Bézier curve with four control points and of degree at most 3. Invent
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a criterion for a cubic Bézier curve to have degree at most two. Express
your criterion in terms of the control points. If possible, given a pictorial
interpretation.

(Method: A curve is quadratic when its third derivative is always zero. Anal-
ogously to the “Second derivative at ends” property, derive a “Third deriva-
tive at ends” property. Actually, since the third derivative of a cubic function
is constant, the third derivative will be the same at both ends and everywhere
else. Now set the third derivative = 0.)

Problem BB-36. For each graph in Figure 1, do the following, separately
for each: Choose z,y-axes so that the lower-left vertex is at the origin and
so that all control points have integer coordinates, with all their coordinates
together having greatest common divisor 1. Then calculate P(1) in decimals,
and see if it does seem to match the graph.

Problem BB-37. Plot the following functions together on one graph, for
0<t<1:

t)’

t) + J31(1),

1)+ J51(t) + J52(1),

t) + J3,1(t) + J3,2(t) + J3,3(t).

Problem BB-38. On a single graph, plot the Bézier curve with control
points (1,0), (1,3), (3,1), (0,1) and also the three other Bézier curves whose
control points are the same as these times Rggo, R1gp0, and Razge, respectively.
This gives a pretty good approximation to a circle.

Problem BB-39. For a Bézier curve of degree 4, with control points F, ..., P,
invent a Half-way Point Property in terms of P, and the midpoints of PyP;
and P1P3.

Problem BB-40. Sketch a parametric cubic curve P(t) for which P(0) =
(—1,0), P(1) = (1,0), P'(0) = (-3,3), P'(1) = (3,-3).

Problem BB-41. Show that for a cubic Bézier curve with control points P,
Py, Py, Pj, the center of mass of the “control triangle” for P’'(t) is the same
as the “missing leg” P; — Py (as a vector) in the original control polygon.
(You may quote the result of Problem BB-31.)

Problem BB-42. Find the set of ¢ with 0 < ¢ <1 for which J3,(¢) has the
largest value among the four Bernstein polynomials of degree 3. This is the
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same as the set of ¢t for which F; has the largest influence among the four
control points. Correspondingly, where does each of Py, P,, and P3 have the
largest influence, in terms of sets of ¢?
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